

Imprint
Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version: October 2012 (First published in November 2011)

ISBN: 9783943075212

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Andrew Rogerson & Talita Telma Stöckle

Technical Editing: Andrew Rogerson

Proofreading: Andrew Lobo, Iris Ljesnjanin

Idea & Concept: Smashing Media GmbH

Smashing eBook #13│JavaScript Essentials│ 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and
developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing
companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #13│JavaScript Essentials│ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook
It is not always easy for Web developers and designers to make the right
decisions when having to choose the right solution. Either while building a
complex Web application or even by improving a website, there are
countless pre-built solutions available and picking one of them can surely be
a burden sometimes. In this eBook we enlighten the most important issues
you should pay attention to by all means when selecting a solution, i.e. how
stable, easy to customize, usable and accessible it is, whether it can be
maintained in the future, what exactly is supported and how you can extend
the functionalities on your own.

One of the many important issues considered in this Smashing eBook #13:
JavaScript Essentials is the importance of reviewing your code and what to
avoid when you are implementing in JavaScript. Maintaining strong coding
standards and withdrawing your programming away from common errors
should be the basic requests for the general quality of your solutions, and
the articles we have selected will explain exactly how you can achieve this.
One of the sections also advises to have your code reviewed by experts
and check whether they may provide other solutions to the problems you're
experiencing.

Last but not least, you'll get to know the golden rules of JavaScript basic
animations better, as well as JSON as a data format along with the native
JavaScript functions (Math, Array, String), shortcut notations, and much
more. Of course, we couldn't leave out JS events that will make your
webApps work, implementation of anonymous functions, module patterns,
configurations, interaction with the back end and usage of libraries to
specify codes. And for those of you who are rather interested in AJAX, you'll
get the information you need in case you've been wanting to turn your
content dynamic and searchable.

— Andrew Rogerson, Smashing eBook Editor

Smashing eBook #13│JavaScript Essentials│ 4

Table of Contents
Seven JavaScript Things I Wish I Knew Much Earlier In My Career

Lessons From A Review Of JavaScript Code

Find The Right JavaScript Solution With A 7-Step Test

Ten Oddities And Secrets About JavaScript

The Seven Deadly Sins Of JavaScript Implementation

A Quick Look Into The Math Of Animations With JavaScript

Searchable Dynamic Content With AJAX Crawling

About The Authors

Smashing eBook #13│JavaScript Essentials│ 5

Seven JavaScript !ings I Wish I Knew
Much Earlier In My Career

Christian Heilmann

I’ve been writing JavaScript code for much longer than I care to remember. I
am very excited about the language’s recent success; it’s good to be a part
of that success story. I’ve written dozens of articles, book chapters and one
full book on the matter, and yet I keep finding new things. Here are some of
the “aha!” moments I’ve had in the past, which you can try out rather than
waiting for them to come to you by chance.

Shortcut Notations
One of the things I love most about JavaScript now is shortcut notations to
generate objects and arrays. So, in the past when we wanted to create an
object, we wrote:

var car = new Object();
car.colour = 'red';
car.wheels = 4;
car.hubcaps = 'spinning';
car.age = 4;

The same can be achieved with:

Smashing eBook #13│JavaScript Essentials│ 6

var car = {
 colour:'red',
 wheels:4,
 hubcaps:'spinning',
 age:4
}

Much shorter, and you don’t need to repeat the name of the object. Right
now, car is fine, but what happens when you use
invalidUserInSession? The main gotcha in this notation is IE. Never
ever leave a trailing comma before the closing curly brace or you’ll be in
trouble.

The other handy shortcut notation is for arrays. The old school way of
defining arrays was this:

var moviesThatNeedBetterWriters = new Array(
 'Transformers','Transformers2','Avatar','Indiana Jones 4'
);

The shorter version of this is:
var moviesThatNeedBetterWriters = [
 'Transformers','Transformers2','Avatar','Indiana Jones 4'
];

The other thing about arrays is that there is no such thing as an associative
array. You will find a lot of code examples that define the above car
example like so:
var car = new Array();
car['colour'] = 'red';
car['wheels'] = 4;
car['hubcaps'] = 'spinning';
car['age'] = 4;

This is not Sparta; this is madness—don’t bother with this. “Associative
arrays” is a confusing name for objects.

Smashing eBook #13│JavaScript Essentials│ 7

Another very cool shortcut notation is the ternary notation for conditions. So,
instead of the following…

var direction;
if(x < 200){
 direction = 1;
} else {
 direction = -1;

}… You could write a shorter version using the ternary notation:
var direction = x < 200 ? 1 : -1;

The true case of the condition is after the question mark, and the other
case follows the colon.

JSON As A Data Format
Before I discovered JSON to store data, I did all kinds of crazy things to put
content in a JavaScript-ready format: arrays, strings with control characters
to split, and other abominations. The creation of JSON by Douglas
Crockford changed all that. Using JSON, you can store complex data in a
format that is native to JavaScript and doesn't need any extra conversion to
be used immediately.

JSON is short for "JavaScript Object Notation" and uses both of the
shortcuts we covered earlier.

So, if I wanted to describe a band, for example, I could do the following:

Smashing eBook #13│JavaScript Essentials│ 8

http://json.org/
http://json.org/

var band = {
 "name":"The Red Hot Chili Peppers",
 "members":[
 {
 "name":"Anthony Kiedis",
 "role":"lead vocals"
 },
 {
 "name":"Michael 'Flea' Balzary",
 "role":"bass guitar, trumpet, backing vocals"
 },
 {
 "name":"Chad Smith",
 "role":"drums,percussion"
 },
 {
 "name":"John Frusciante",
 "role":"Lead Guitar"
 }
],
 "year":"2009"
}

You can use JSON directly in JavaScript and, when wrapped in a function
call, even as a return format of APIs. This is called JSON-P and is supported
by a lot of APIs out there. You can use a data endpoint, returning JSON-P
directly in a script node:

Smashing eBook #13│JavaScript Essentials│ 9

<div id="delicious"></div><script>
function delicious(o){
 var out = '';
 for(var i=0;i<o.length;i++){
 out += '' +
 o[i].d + '';
 }
 out += '';
 document.getElementById('delicious').innerHTML = out;
}
</script>
<script src="http://feeds.delicious.com/v2/json/codepo8/
javascript?count=15&callback=delicious"></script>

This calls the Delicious Web service to get my latest JavaScript bookmarks
in JSON format and then displays them as an unordered list.

In essence, JSON is probably the most lightweight way of describing
complex data—and it runs in a browser. You can even use it in PHP using
the json_decode() function.

Native JavaScript Functions (Math, Array And
String)
One thing that amazed me is how much easier my life got once I read up
thoroughly on the math and string functions of JavaScript. You can use
these to avoid a lot of looping and conditions. For example, when I had the
task of finding the largest number in an array of numbers, I used to write a
loop, like so:

Smashing eBook #13│JavaScript Essentials│ 10

http://feeds.delicious.com/v2/json/codepo8/javascript?count=15&callback=delicious
http://feeds.delicious.com/v2/json/codepo8/javascript?count=15&callback=delicious
http://feeds.delicious.com/v2/json/codepo8/javascript?count=15&callback=delicious
http://feeds.delicious.com/v2/json/codepo8/javascript?count=15&callback=delicious

var numbers = [3,342,23,22,124];
var max = 0;
for(var i=0;i<numbers.length;i++){
 if(numbers[i] > max){
 max = numbers[i];
 }
}
alert(max);

This can be achieved without a loop:

var numbers = [3,342,23,22,124];
numbers.sort(function(a,b){return b - a});
alert(numbers[0]);

Notice that you cannot use sort() on a number array because it sorts
lexically. There's a good tutorial on sort() here in case you need to know
more.

Another interesting method is Math.max(). This one returns the largest
number from a list of parameters:

Math.max(12,123,3,2,433,4); // returns 433

Because this tests for numbers and returns the largest one, you can use it to
test for browser support of certain properties:

var scrollTop= Math.max(
 doc.documentElement.scrollTop,
 doc.body.scrollTop
);

This works around an Internet Explorer problem. You can read out the
scrollTop of the current document, but depending on the DOCTYPE of
the document, one or the other property is assigned the value. When you
use Math.max() you get the right number because only one of the
properties returns one; the other will be undefined. You can read more
about shortening JavaScript with math functions here.

Smashing eBook #13│JavaScript Essentials│ 11

http://www.javascriptkit.com/javatutors/arraysort.shtml
http://www.javascriptkit.com/javatutors/arraysort.shtml
http://www.wait-till-i.com/2007/06/28/shortening-javascripts-with-math/
http://www.wait-till-i.com/2007/06/28/shortening-javascripts-with-math/

Other very powerful functions to manipulate strings are split() and
join(). Probably the most powerful example of this is writing a function to
attach CSS classes to elements.

The thing is, when you add a class to a DOM element, you want to add it
either as the first class or to already existing classes with a space in front of
it. When you remove classes, you also need to remove the spaces (which
was much more important in the past when some browsers failed to apply
classes with trailing spaces).

So, the original function would be something like:

function addclass(elm,newclass){
 var c = elm.className;
 elm.className = (c === '') ? newclass : c+' '+newclass;
}

You can automate this using the split() and join() methods:
function addclass(elm,newclass){
 var classes = elm.className.split(' ');
 classes.push(newclass);
 elm.className = classes.join(' ');
}

This automatically ensures that classes are space-separated and that yours
gets tacked on at the end.

Event Delegation
Events make Web apps work. I love events, especially custom events, which
make your products extensible without your needing to touch the core
code. The main problem (and actually one of its strengths) is that events are
removed from the HTML—you apply an event listener to a certain element
and then it becomes active. Nothing in the HTML indicates that this is the
case though. Take this abstraction issue (which is hard for beginners to

Smashing eBook #13│JavaScript Essentials│ 12

wrap their heads around) and the fact that "browsers" such as IE6 have all
kind of memory problems and too many events applied to them, and you'll
see that not using too many event handlers in a document is wise.

This is where event delegation comes in. When an event happens on a
certain element and on all the elements above it in the DOM hierarchy, you
can simplify your event handling by using a single handler on a parent
element, rather than using a lot of handlers.

What do I mean by that? Say you want a list of links, and you want to call a
function rather than load the links. The HTML would be:

<h2>Great Web resources</h2>
<ul id="resources">
 Opera Web Standards
Curriculum
 Sitepoint
 A List Apart
 YUI Blog
 Blame it on the
voices
 Oddly specific</
li>

The normal way to apply event handlers here would be to loop through the
links:

Smashing eBook #13│JavaScript Essentials│ 13

http://icant.co.uk/sandbox/eventdelegation/
http://icant.co.uk/sandbox/eventdelegation/
http://opera.com/wsc
http://opera.com/wsc
http://sitepoint.com
http://sitepoint.com
http://alistapart.com
http://alistapart.com
http://yuiblog.com
http://yuiblog.com
http://blameitonthevoices.com
http://blameitonthevoices.com
http://oddlyspecific.com
http://oddlyspecific.com

// Classic event handling example
(function(){
 var resources = document.getElementById('resources');
 var links = resources.getElementsByTagName('a');
 var all = links.length;
 for(var i=0;i<all;i++){
 // Attach a listener to each link
 links[i].addEventListener('click',handler,false);
 };
 function handler(e){
 var x = e.target; // Get the link that was clicked
 alert(x);
 e.preventDefault();
 };
})();

This could also be done with a single event handler:

(function(){
 var resources = document.getElementById('resources');
 resources.addEventListener('click',handler,false);
 function handler(e){
 var x = e.target; // get the link tha
 if(x.nodeName.toLowerCase() === 'a'){
 alert('Event delegation:' + x);
 e.preventDefault();
 }
 };
})();

Because the click happens on all the elements in the list, all you need to do
is compare the nodeName to the right element that you want to react to the
event.

Disclaimer: while both of the event examples above work in browsers, they
fail in IE6. For IE6, you need to apply an event model other than the W3C
one, and this is why we use libraries for these tricks.

Smashing eBook #13│JavaScript Essentials│ 14

The benefits of this approach are more than just being able to use a single
event handler. Say, for example, you want to add more links dynamically to
this list. With event delegation, there is no need to change anything; with
simple event handling, you would have to reassign handlers and re-loop the
list.

Anonymous Functions And !e Module Pa"ern
One of the most annoying things about JavaScript is that it has no scope for
variables. Any variable, function, array or object you define that is not inside
another function is global, which means that other scripts on the same page
can access—and will usually override— them.

The workaround is to encapsulate your variables in an anonymous function
and call that function immediately after you define it. For example, the
following definition would result in three global variables and two global
functions:

var name = 'Chris';
var age = '34';
var status = 'single';
function createMember(){
 // [...]
}
function getMemberDetails(){
 // [...]
}

Any other script on the page that has a variable named status could cause
trouble. If we wrap all of this in a name such as myApplication, then we
work around that issue:

Smashing eBook #13│JavaScript Essentials│ 15

var myApplication = function(){
 var name = 'Chris';
 var age = '34';
 var status = 'single';
 function createMember(){
 // [...]
 }
 function getMemberDetails(){
 // [...]
 }
}();

This, however, doesn't do anything outside of that function. If this is what
you need, then great. You may as well discard the name then:

(function(){
 var name = 'Chris';
 var age = '34';
 var status = 'single';
 function createMember(){
 // [...]
 }
 function getMemberDetails(){
 // [...]
 }
})();

If you need to make some of the things reachable to the outside, then you
need to change this. In order to reach createMember() or
getMemberDetails(), you need to return them to the outside world to
make them properties of myApplication:

var myApplication = function(){
 var name = 'Chris';
 var age = '34';
 var status = 'single';
 return{
 createMember:function(){
 // [...]

Smashing eBook #13│JavaScript Essentials│ 16

 },
 getMemberDetails:function(){
 // [...]
 }
 }
}();
// myApplication.createMember() and
// myApplication.getMemberDetails() now works.

This is called a module pattern or singleton. It was mentioned a lot by
Douglas Crockford and is used very much in the Yahoo User Interface
Library YUI. What ails me about this is that I need to switch syntaxes to make
functions or variables available to the outside world. Furthermore, if I want to
call one method from another, I have to call it preceded by the
myApplication name. So instead, I prefer simply to return pointers to the
elements that I want to make public. This even allows me to shorten the
names for outside use:

Smashing eBook #13│JavaScript Essentials│ 17

http://developer.yahoo.com/yui
http://developer.yahoo.com/yui
http://developer.yahoo.com/yui
http://developer.yahoo.com/yui

var myApplication = function(){
 var name = 'Chris';
 var age = '34';
 var status = 'single';
 function createMember(){
 // [...]
 }
 function getMemberDetails(){
 // [...]
 }
 return{
 create:createMember,
 get:getMemberDetails
 }
}();
//myApplication.get() and myApplication.create() now work.

I've called this "revealing module pattern."

Allowing For Configuration
Whenever I've written JavaScript and given it to the world, people have
changed it, usually when they wanted it to do things that it couldn't do out of
the box—but also often because I made it too hard for people to change
things.

The workaround is to add configuration objects to your scripts. I've
written about JavaScript configuration objects in detail, but here's the gist:

• Have an object as part of your whole script called configuration.

• In it, store all of the things that people will likely change when they use
your script:

• CSS ID and class names;

• Strings (such as labels) for generated buttons;

Smashing eBook #13│JavaScript Essentials│ 18

http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://www.wait-till-i.com/2008/05/23/script-configuration/
http://www.wait-till-i.com/2008/05/23/script-configuration/

• Values such as "number of images being displayed," "dimensions of
map";

• Location, locale and language settings.

• Return the object as a public property so that people can override it.

Most of the time you can do this as a last step in the coding process. I've put
together an example in "Five things to do to a script before handing it over
to the next developer."

In essence, you want to make it easy for people to use your code and alter it
to their needs. If you do that, you are much less likely to get confusing
emails from people who complain about your scripts and refer to changes
that someone else actually did.

Interacting With !e Back End
One of the main things I learned from all my years with JavaScript is that it is
a great language with which to make interactive interfaces, but when it
comes to crunching numbers and accessing data sources, it can be
daunting.

Originally, I learned JavaScript to replace Perl because I was sick of copying
things to a cgi-bin folder in order to make it work. Later on, I learned that
making a back-end language do the main data churning for me, instead of
trying to do all in JavaScript, makes more sense with regard to security and
language.

If I access a Web service, I could get JSON-P as the returned format and do
a lot of data conversion on the client, but why should I when I have a server
that has a richer way of converting data and that can return the data as
JSON or HTML… and cache it for me to boot?

Smashing eBook #13│JavaScript Essentials│ 19

http://www.wait-till-i.com/2008/02/07/five-things-to-do-to-a-script-before-handing-it-over-to-the-next-developer/
http://www.wait-till-i.com/2008/02/07/five-things-to-do-to-a-script-before-handing-it-over-to-the-next-developer/
http://www.wait-till-i.com/2008/02/07/five-things-to-do-to-a-script-before-handing-it-over-to-the-next-developer/
http://www.wait-till-i.com/2008/02/07/five-things-to-do-to-a-script-before-handing-it-over-to-the-next-developer/

So, if you want to use AJAX, learn about HTTP and about writing your own
caching and conversion proxy. You will save a lot of time and nerves in the
long run.

Browser-Specific Code Is A Waste Of Time. Use
Libraries!
When I started Web development, the battle between using
document.all and using document.layers as the main way to access
the document was still raging. I chose document.layers because I liked
the idea of any layer being its own document (and I had written more than
enough document.write solutions to last a lifetime). The layer model
failed, but so did document.all. When Netscape 6 went all out supporting
only the W3C DOM model, I loved it, but end users didn't care. End users
just saw that this browser didn't show the majority of the Internets correctly
(although it did)—the code we produced was what was wrong. We built
short-sighted code that supported a state-of-the-art environment, and the
funny thing about the state of the art is that it is constantly changing.

I've wasted quite some time learning the ins and outs of all of the browsers
and working around their issues. Doing this back then secured my career
and ensured that I had a great job. But we shouldn't have to go through this
trial by fire any longer.

Libraries such as YUI, jQuery and Dojo are here to help us with this. They
take on the problems of browsers by abstracting the pains of poor
implementation, inconsistencies and flat-out bugs, and relieve us of the
chore. Unless you want to beta test a certain browser because you're a big
fan, don't fix browser issues in your JavaScript solutions, because you are
unlikely to ever update the code to remove this fix. All you would be doing is
adding to the already massive pile of outdated code on the Web.

Smashing eBook #13│JavaScript Essentials│ 20

That said, relying solely on libraries for your core skill is short-sighted. Read
up on JavaScript, watch some good videos and tutorials on it, and
understand the language. (Tip: closures are God's gift to the JavaScript
developer.) Libraries will help you build things quickly, but if you assign a lot
of events and effects and need to add a class to every HTML element in the
document, then you are doing it wrong.

Resources
In addition to the resources mentioned in this article, also check out the
following to learn more about JavaScript itself:

• Douglas Crockford on JavaScript
An in-depth video Lecture series.

• The Opera Web Standards Curriculum
With a detailed section on JavaScript.WordPress Essentials: How To
Create A WordPress Plugin

Smashing eBook #13│JavaScript Essentials│ 21

http://yuiblog.com/crockford/
http://yuiblog.com/crockford/
http://dev.opera.com/articles/wsc/
http://dev.opera.com/articles/wsc/

Lessons From A Review Of JavaScript
Code

Addy Osmani

Before we start, I’d like to pose a question: when was the last time you
asked someone to review your code? Reviewing code is possibly the single
best technique to improve the overall quality of your solutions, and if you’re
not actively taking advantage of it, then you’re missing out on identifying
bugs and hearing suggestions that could make your code better.

None of us write 100% bug-free code all of the time, so don’t feel there’s a
stigma attached to seeking help. Some of the most experienced developers
in our industry, from framework authors to browser developers, regularly
request reviews of their code from others; asking whether something could
be tweaked should in no way be considered embarrassing. Reviews are a
technique like any other and should be used where possible.

Today we’ll look at where to get your code reviewed, how to structure your
requests, and what reviewers look for. I was recently asked to review some
code for a new JavaScript application, and thought I’d like to share some of
my feedback, because it covers some JavaScript fundamentals that are
always useful to bear in mind.

Introduction
Reviewing code goes hand in hand with maintaining strong coding
standards. That said, standards don’t usually prevent logical errors or
misunderstandings about the quirks of a programming language, whether
it’s JavaScript, Ruby, Objective-C or something else. Even the most

Smashing eBook #13│JavaScript Essentials│ 22

experienced developers can make these kinds of mistakes, and reviewing
code can greatly assist with catching them.

The first reaction most of us have to criticism is to defend ourselves (or our
code), and perhaps lash back. While criticism can be slightly demoralizing,
think of it as a learning experience that spurs us to do better and to
improve ourselves; because in many cases, once we’ve calmed down, it
actually does.

Also remember that no one is obliged to provide feedback on your work,
and if the comments are indeed constructive, then be grateful for the time
spent offering the input.

Reviews enable us to build on the experience of others and to benefit from
a second pair of eyes. And at the end of the day, they are an opportunity for
us to write better code. Whether we take advantage of them is entirely our
choice.

Where Can I Get My Code Reviewed?
Often the most challenging part is actually finding an experienced
developer who you trust to do the review. Below are some places where
you can request others to review your code (sometimes in other languages,
too).

Smashing eBook #13│JavaScript Essentials│ 23

• JSMentors
JSMentors is a mailing list that discusses everything to do with
JavaScript (including Harmony), and a number of experienced
developers are on its review panel (including JD Dalton, Angus Croll
and Nicholas Zakas). These mentors might not always be readily
available, but they do their best to provide useful, constructive
feedback on code that’s been submitted. If you’re looking for assistance
with a specific JavaScript framework beyond vanilla JavaScript, the
majority of frameworks and libraries have mailing lists or forums that
you can post to and that might provide a similar level of assistance.

• freenode IRC
Many chat rooms here are dedicated both to discussing the JavaScript
language and to requests for help or review. The most popular rooms
are obviously named, and #javascript is particularly useful for generic
JavaScript requests, while channels such as #jquery and #dojo are
better for questions and requests related to particular libraries and
frameworks.

• Code Review (beta)
You would be forgiven for confusing Code Review with StackOverflow,
but it’s actually a very useful, broad-spectrum, subjective tool for getting
peer review of code. While on StackOverflow you might ask the
question “Why isn’t my code working?,” Code Review is more suited to
questions like “Why is my code so ugly?” If you still have any doubt
about what it offers, I strongly recommend checking out the FAQs.

Smashing eBook #13│JavaScript Essentials│ 24

http://jsmentors.com/
http://jsmentors.com/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://codereview.stackexchange.com/
http://codereview.stackexchange.com/
http://codereview.stackexchange.com/faq
http://codereview.stackexchange.com/faq

• Twitter
This might sound odd, but at least half of the code that I submit for
review is through social networks. Social networks work best, of course,
if your code is open source, but trying them never hurts. The only thing I
suggest is to ensure that the developers who you follow and interact
with are experienced; a review by a developer with insufficient
experience can sometimes be worse than no review at all, so be
careful!

• GitHub + reviewth.is
We all know that GitHub provides an excellent architecture for
reviewing code. It comes with commits, file and line comments, update
notifications, an easy way to track forks of gits and repositories, and
more. All that’s missing is a way to actually initiate reviews. A tool called
reviewth.is attempts to rectify that by giving you a post-commit hook
that helps to automate this process, so changes that get posted in the
wild have a clear #reviewthis hash tag, and you can tag any users who
you wish to review your updates. If many of your colleagues happen to
develop in the same language as you do, this set-up can work well for
code reviews sourced closer to home. One workflow that works well
with this (if you’re working on a team or on a collaborative project) is to
perform your own work in a topic branch in a repository and then send
through pull requests on that branch. Reviewers would examine the
changes and commits and could then make line-by-line and file-by-file
comments. You (the developer) would then take this feedback and do a
destructive rebase on that topic branch, re-push it, and allow the review
cycle to repeat until merging them would be acceptable.

How Should I Structure My Review Requests?
The following are some guidelines (based on experience) on how to
structure your requests for code reviews, to increase the chances of them

Smashing eBook #13│JavaScript Essentials│ 25

http://twitter.com/
http://twitter.com/
http://github.com/
http://github.com/
http://reviewth.is/
http://reviewth.is/
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review

being accepted. You can be more liberal with them if the reviewer is on your
team; but if the reviewer is external, then these might save you some time:

• Isolate what you would like to be reviewed; ensure that it can be easily
run, forked and commented; be clear about where you think
improvements could be made; and, above all, be patient.

• Make it as easy as possible for the reviewer to look at, demo and
change your code.

• Don’t submit a ZIP file of your entire website or project; very few people
have the time to go through all of this. The only situation in which this
would be acceptable is if your code absolutely required local testing.

• Instead, isolate and reduce what you would like to be reviewed on
jsFiddle, on jsbin or in a GitHub gist. This will allow the reviewer to
easily fork what you’ve provided and to show changes and comments
on what can be improved. If you would prefer a “diff” between your
work and any changes they’ve recommended, you might also be
interested in PasteBin, which supports this.

• Similarly, don’t just submit a link to a page and ask them to “View
source” in order to see what can be improved. On websites with a lot of
scripts, this task would be challenging and lowers the chances of a
reviewer agreeing to help. No one wants to work to find what you want
reviewed.

• Clearly indicate where you personally feel the implementation could be
improved. This will help the reviewer quickly home in on what you’re
most interested in having reviewed and will save them time. Many
reviewers will still look at other parts of the code you’ve submitted
regardless, but at least help them prioritize.

Smashing eBook #13│JavaScript Essentials│ 26

http://jsfiddle.net/
http://jsfiddle.net/
http://www.jsbin.com/
http://www.jsbin.com/
http://gist.github.com/
http://gist.github.com/
http://pastebin.com/
http://pastebin.com/

• Indicate what (if any) research you’ve done into techniques for
improving the code. The reviewer might very well suggest the same
resources, but if they’re aware that you already know of them, then they
might offer alternative suggestions (which is what you want).

• If English isn’t your first language, there’s no harm in saying so. When
other developers inform me of this, I know whether to keep the
language in my review technical or simple.

• Be patient. Some reviews take several days to get back to me, and
nothing’s wrong with that. Other developers are usually busy with other
projects, and someone who agrees to schedule a look at your work is
being kind. Be patient, don’t spam them with reminders, and be
understanding if they get delayed. Doing this sometimes pay off,
because the reviewer can provide even more detailed feedback when
they have more time.

What Should Code Reviews Provide?
Jonathan Betz, a former developer at Google, once said that a code review
should ideally address six things:

1. Correctness
Does the code do everything it claims?

2. Complexity
Does it accomplish its goals in a straightforward way?

3. Consistency
Does it achieve its goals consistently?

4. Maintainability
Could the code be easily extended by another member of the team
with a reasonable level of effort?

Smashing eBook #13│JavaScript Essentials│ 27

5. Scalability
Is the code written in such a way that it would work for both 100 users
and 10,000? Is it optimized?

6. Style
Does the code adhere to a particular style guide (preferably one
agreed upon by the team if the project is collaborative)?

While I agree with this list, expanding it into an action guide of what
reviewers should practically aim to give developers would be useful. So,
reviewers should do the following:

• Provide clear comments, demonstrate knowledge, and communicate
well.

• Point out the shortfalls in an implementation (without being overly
critical).

• State why a particular approach isn’t recommended, and, if possible,
refer to blog posts, gists, specifications, MDN pages and jsPerf tests to
back up the statement.

• Suggest alternative solutions, either in a separate runnable form or
integrated in the code via a fork, so that the developer can clearly see
what they did wrong.

• Focus on solutions first, and style second. Suggestions on style can
come later in the review, but address the fundamental problem as
thoroughly as possible before paying attention to this.

• Review beyond the scope of what was requested. This is entirely at the
reviewer’s discretion, but if I notice issues with other aspects of a
developer’s implementation, then I generally try to advise them on how
those, too, might be improved. I’ve yet to receive a complaint about this,
so I assume it’s not a bad thing.

Smashing eBook #13│JavaScript Essentials│ 28

http://developer.mozilla.org/
http://developer.mozilla.org/
http://jsperf.com/
http://jsperf.com/

Collaborative Code Reviews
Although a review by one developer can work well, an alternative approach
is to bring more people into the process. This has a few distinct advantages,
including reducing the load on individual reviewers and exposing more
people to your implementation, which could potentially lead to more
suggestions for improvements. It also allows a reviewer’s comments to be
screened and corrected if they happen to make a mistake.

To assist the group, you may wish to employ a collaborative tool to allow all
reviewers to simultaneously inspect and comment on your code. Luckily, a
few decent ones out there are worth checking out:

• Review Board
This Web-based tool is available for free under the MIT license. It
integrates with Git, CVS, Mercurial, Subversion and a number of other
source-control systems. Review Board can be installed on any server
running Apache or lighttpd and is free for personal and commercial use.

• Crucible
This tool by Australian software company Atlassian is also Web-based.
It’s aimed at the enterprise and works best with distributed teams.
Crucible facilitates both live review and live commenting and, like
Review Board, integrates with a number of source-control tools,
including Git and Subversion.

• Rietveld
Like the other two, Rietveld also supports collaborative review, but it
was actually written by the creator of Python, Guido van Rossum. It is
designed to run on Google’s cloud service and benefits from Guido’s
experience writing Mondrian, the proprietary app that Google uses
internally to review its code.

Smashing eBook #13│JavaScript Essentials│ 29

http://www.reviewboard.org/
http://www.reviewboard.org/
http://www.atlassian.com/software/crucible
http://www.atlassian.com/software/crucible
http://code.google.com/p/rietveld/
http://code.google.com/p/rietveld/

• Others
A number of other options for collaborative code review weren’t
created for that purpose. These include CollabEdit (free and Web-
based) and, my personal favorite, EtherPad (also free and Web-based).

(Image Source: joelogon)

Lessons From A JavaScript Code Review
On to the review.

A developer recently wrote in, asking me to review their code and provide
some useful suggestions on how they might improve it. While I’m certainly
not an expert on reviewing code (don’t let the above fool you), here are the
problems and solutions that I proposed.

PROBLEM 1

Problem: Functions and objects are passed as arguments to other functions
without any type validation.

Feedback: Type validation is an essential step in ensuring that you’re
working only with input of a desired type. Without sanitization checks in

Smashing eBook #13│JavaScript Essentials│ 30

http://collabedit.com/
http://collabedit.com/
http://piratepad.net/front-page/
http://piratepad.net/front-page/

place, you run the risk of users passing in just about anything (a string, a
date, an array, etc.), which could easily break your application if you haven’t
developed it defensively. For functions, you should do the following at a
minimum:

1. Test to ensure that arguments being passed actually exist,

2. Do a typeof check to prevent the app from executing input that is not
a valid function at all.

if (callback && typeof callback === "function"){
 /* rest of your logic */
}else{
 /* not a valid function */
}

Unfortunately, a simple typeof check isn’t enough on its own. As Angus
Croll points out in his post “Fixing the typeof operator,” you need to be
aware of a number of issues with typeof checking if you’re using them for
anything other than functions.

For example, typeof null returns object, which is technically incorrect.
In fact, when typeof is applied to any object type that isn’t a function, it
returns object, not distinguishing between Array, Date, RegEx or
whatever else.

The solution is to use Object.prototype.toString to call the
underlying internal property of JavaScript objects known as [[Class]], the
class property of the object. Unfortunately, specialized built-in objects
generally overwrite Object.prototype.toString, but you can force
the generic toString function on them:

Object.prototype.toString.call([1,2,3]); //"[object Array]"

Smashing eBook #13│JavaScript Essentials│ 31

http://javascriptweblog.wordpress.com/2011/08/08/fixing-the-javascript-typeof-operator/
http://javascriptweblog.wordpress.com/2011/08/08/fixing-the-javascript-typeof-operator/

You might also find Angus’s function below useful as a more reliable
alternative to typeof. Try calling betterTypeOf() against objects, arrays
and other types to see what happens.

function betterTypeOf(input){
 return Object.prototype.toString.call(input).match(/^\
[object\s(.*)\]$/)[1];
}

Here, parseInt() is being blindly used to parse an integer value of user
input, but no base is specified. This can cause issues.

In JavaScript: The Good Parts, Douglas Crockford refers to parseInt() as
being dangerous. Although you probably know that passing it a string
argument returns an integer, you should also ideally specify a base or radix
as the second argument, otherwise it might return unexpected output. Take
the following example:

parseInt('20'); // returns what you expect, however…
parseInt('020'); // returns 16
parseInt('000020'); // returns 16
parseInt('020', 10); // returns 20 as we've specified the
base to use

You’d be surprised by how many developers omit the second argument, but
it happens quite regularly. Remember that your users (if permitted to freely
enter numeric input) won’t necessarily follow standard number conventions
(because they’re crazy!). I’ve seen 020, ,20, ;'20 and many other
variations used, so do your best to parse as broad a range of inputs as
possible. The following tricks to using parseInt() are occasionally better:

Math.floor("020"); // returns 20
Math.floor("0020"); //returns 20
Number("020"); //returns 20
Number("0020"); //returns 20
+"020"; //returns 20

Smashing eBook #13│JavaScript Essentials│ 32

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do

PROBLEM 2

Problem: Checks for browser-specific conditions being met are repeated
throughout the code base (for example, feature detection, checks for
supported ES5 features, etc.).

Feedback: Ideally, your code base should be as DRY as possible, and there
are some elegant solutions to this problem. For example, you might benefit
from the load-time configuration pattern here (also called load-time and
init-time branching). The basic idea is that you test a condition only once
(when the application loads) and then access the result of that test for all
subsequent checks. This pattern is commonly found in JavaScript libraries
that configure themselves at load time to be optimized for a particular
browser.

This pattern could be implemented as follows:

var tools = {
 addMethod: null,
 removeMethod: null
};

if(/* condition for native support */){
 tools.addMethod = function(/* params */){
 /* method logic */
 }
}else{
 /* fallback - eg. for IE */
 tools.addMethod = function(/* */){
 /* method logic */
 }
}

The example below demonstrates how this can be used to normalize
getting an XMLHttpRequest object.
var utils = {
 getXHR: null
};

Smashing eBook #13│JavaScript Essentials│ 33

if(window.XMLHttpRequest){
 utils.getXHR = function(){
 return new XMLHttpRequest;
 }
}else if(window.ActiveXObject){
 utils.getXHR = function(){
 /* this has been simplified for example sakes */
 return new ActiveXObject(’Microsoft.XMLHTTP’);
 }
}

For a great example, Stoyan Stefanov applies this to attaching and removing
event listeners cross-browser, in his book JavaScript Patterns:
var utils = {
 addListener: null,
 removeListener: null
};
// the implementation
if (typeof window.addEventListener === ’function’) {
 utils.addListener = function (el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 utils.removeListener = function (el, type, fn) {
 el.removeEventListener(type, fn, false);
 };
} else if (typeof document.attachEvent === ’function’) { // IE
 utils.addListener = function (el, type, fn) {
 el.attachEvent(’on’ + type, fn);
 };
 utils.removeListener = function (el, type, fn) {
 el.detachEvent(’on’ + type, fn);
 };
} else { // older browsers
 utils.addListener = function (el, type, fn) {
 el[’on’ + type] = fn;
 };
 utils.removeListener = function (el, type, fn) {
 el[’on’ + type] = null;

Smashing eBook #13│JavaScript Essentials│ 34

http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/9780596806767.do

 };
}

PROBLEM 3

Problem: The native Object.prototype is being extended regularly.

Feedback: Extending native types is generally frowned upon, and few (if
any) popular code bases should dare to extend Object.prototype. The
reality is that there is not likely a situation in which you absolutely need to
extend it in this way. In addition to breaking the object-as-hash tables in
JavaScript and increasing the chance of naming collisions, it’s generally
considered bad practice, and modifying it should only be a last resort (this is
quite different from extending your own custom object properties).

If for some reason you do end up extending the object prototype, ensure
that the method doesn’t already exist, and document it so that the rest of
the team is aware why it’s necessary. You can use the following code
sample as a guide:

if(typeof Object.prototype.myMethod != ’function’){
 Object.prototype.myMethod = function(){
 //implem
 };
}

Juriy Zaytsev has a great post on extending native and host objects, which
may be of interest.

PROBLEM 4

Problem: Some of the code is heavily blocking the page because it’s either
waiting on processes to complete or data to load before executing anything
further.

Smashing eBook #13│JavaScript Essentials│ 35

http://twitter.com/kangax
http://twitter.com/kangax
http://perfectionkills.com/extending-built-in-native-objects-evil-or-not/
http://perfectionkills.com/extending-built-in-native-objects-evil-or-not/

Feedback: Page-blocking makes for a poor user experience, and there are a
number of ways to work around it without impairing the application.

One solution is to use “deferred execution” (via promises and futures). The
basic idea with promises is that, rather than issuing blocking calls for
resources, you immediately return a promise for a future value that will
eventually be fulfilled. This rather easily allows you to write non-blocking
logic that can be run asynchronously. It is common to introduce callbacks
into this equation that execute once the request completes.

I’ve written a relatively comprehensive post on this with Julian Aubourg, if
you’re interested in doing this through jQuery, but it can of course be
implemented with vanilla JavaScript as well.

Micro-framework Q offers a CommonJS-compatible implementation of
promises and futures that is relatively comprehensive and can be used as
follows:

Smashing eBook #13│JavaScript Essentials│ 36

http://msdn.microsoft.com/en-us/scriptjunkie/gg723713
http://msdn.microsoft.com/en-us/scriptjunkie/gg723713
https://github.com/kriskowal/
https://github.com/kriskowal/

/* define a promise-only delay function that resolves when a
timeout completes */
function delay(ms) {
 var deferred = Q.defer();
 setTimeout(deferred.resolve, ms);
 return deferred.promise;
}

/* usage of Q with the 'when' pattern to execute a callback
once delay fulfils the promise */
Q.when(delay(500), function () {
 /* do stuff in the callback */
});

If you’re looking for something more basic that can be read through, then
here is Douglas Crockford’s implementation of promises:
function make_promise() {
 var status = ’unresolved’,
 outcome,
 waiting = [],
 dreading = [];

 function vouch(deed, func) {
 switch (status) {
 case ’unresolved’:
 (deed === ’fulfilled’ ? waiting : dreading).push(func);
 break;
 case deed:
 func(outcome);
 break;
 }
 };

 function resolve(deed, value) {
 if (status !== ’unresolved’) {
 throw new Error(’The promise has already been resolved:’
+ status);
 }
 status = deed;

Smashing eBook #13│JavaScript Essentials│ 37

 outcome = value;
 (deed == ’fulfilled’ ? waiting :
dreading).forEach(function (func) {
 try {
 func(outcome);
 } catch (ignore) {}
 });
 waiting = null;
 dreading = null;
 };

 return {
 when: function (func) {
 vouch(’fulfilled’, func);
 },
 fail: function (func) {
 vouch(’smashed’, func);
 },
 fulfill: function (value) {
 resolve(’fulfilled’, value);
 },
 smash: function (string) {
 resolve(’smashed’, string);
 },
 status: function () {
 return status;
 }
 };
};

PROBLEM 5

Problem: You’re testing for explicit numeric equality of a property using the
== operator, but you should probably be using === instead

Feedback: As you may or may not know, the identity == operator in
JavaScript is fairly liberal and considers values to be equal even if they’re of
completely different types. This is due to the operator forcing a coercion of

Smashing eBook #13│JavaScript Essentials│ 38

values into a single type (usually a number) prior to performing any
comparison. The === operator will, however, not do this conversion, so if
the two values being compared are not of the same type, then === will just
return false.

The reason I recommend considering === for more specific type
comparison (in this case) is that == is known to have a number of gotchas
and is considered to be unreliable by many developers.

You might also be interested to know that in abstractions of the language,
such as CoffeeScript, the == operator is completely dropped in favor of
=== beneath the hood due to the former’s unreliability.

Rather than take my word for it, see the examples below of boolean checks
for equality using ==, some of which result in rather unexpected outputs.

Smashing eBook #13│JavaScript Essentials│ 39

3 == "3" // true
3 == "03" // true
3 == "0003" // true
3 == "+3" //true
3 == [3] //true
3 == (true+2) //true
’ \t\r\n ’ == 0 //true
"\t\r\n" == 0 //true
"\t" == 0 // true
"\t\n" == 0 // true
"\t\r" == 0 // true
" " == 0 // true
" \t" == 0 // true
" \ " == 0 // true
" \r\n\ " == 0 //true

The reason that many of the (stranger) results in this list evaluate to true is
because JavaScript is a weakly typed language: it applies type coercion
wherever possible. If you’re interested in learning more about why some of
the expressions above evaluate to true, look at the Annotated ES5 guide,
whose explanations are rather fascinating.

Back to the review. If you’re 100% certain that the values being compared
cannot be interfered with by the user, then proceed with using the ==
operator with caution. Just remember that === covers your bases better in
the event of an unexpected input.

PROBLEM 6

Problem: An uncached array length is being used in all for loops. This is
particularly bad because you’re using it when iterating through an
HTMLCollection.

Here’s an example:

Smashing eBook #13│JavaScript Essentials│ 40

http://es5.github.com/#x9.3.1
http://es5.github.com/#x9.3.1

for(var i=0; i<myArray.length;i++){
 /* do stuff */
}

Feedback: The problem with this approach (which I still see a number of
developers using) is that the array length is unnecessarily re-accessed on
each loop’s iteration. This can be very slow, especially when working with
HTMLCollections (in which case, caching the length can be anywhere up
to 190 times faster than repeatedly accessing it, as Nicholas C. Zakas
mentions in his book High-Performance JavaScript). Below are some options
for caching the array length.

/* cached outside loop */
var len = myArray.length;
for (var i = 0; i < len; i++) {
}

/* cached inside loop */
for (var i = 0, len = myArray.length; i < len; i++) {
}

/* cached outside loop using while */
var len = myArray.length;
while (len--) {
}

A jsPerf test that compares the performance benefits of caching the array
length inside and outside the loop, using prefix increments, counting
down and more is also available, if you would like to study which performs
the best.

PROBLEM 7

Problem: jQuery’s $.each() is being used to iterate over objects and
arrays, in some cases while for is being used in others.

Smashing eBook #13│JavaScript Essentials│ 41

http://shop.oreilly.com/product/9780596802806.do
http://shop.oreilly.com/product/9780596802806.do
http://jsperf.com/
http://jsperf.com/
http://jsperf.com/caching-array-length/7
http://jsperf.com/caching-array-length/7

Feedback: In jQuery, we have two ways to seamlessly iterate over objects
and arrays. The generic $.each iterates over both of these types, whereas
$.fn.each() iterates over a jQuery object specifically (where standard
objects can be wrapped with $() should you wish to use them with the
latter). While the lower-level $.each performs better than $.fn.each(),
both standard JavaScript for and while loops perform much better than
either, as proven by this jsPerf test. Below are some examples of loop
alternatives that also perform better:

/* jQuery $.each */
$.each(a, function() {
 e = $(this);
});

/* classic for loop */
var len = a.length;
for (var i = 0; i < len; i++) {
 //if this must be a jQuery object do..
 e = $(a[i]);
 //otherwise just e = a[i] should suffice
};

/* reverse for loop */
for (var i = a.length; i--) {
 e = $(a[i]);
}

/* classic while loop */
var i = a.length;
while (i--) {
 e = $(a[i]);
}
/* alternative while loop */
var i = a.length - 1;
while (e = a[i--]) {
 $(e)
};

Smashing eBook #13│JavaScript Essentials│ 42

http://api.jquery.com/jQuery.each/
http://api.jquery.com/jQuery.each/
http://api.jquery.com/each/
http://api.jquery.com/each/
http://jsperf.com/jquery-each-vs-for-loop/24/
http://jsperf.com/jquery-each-vs-for-loop/24/

You might find Angus Croll’s post on “Rethinking JavaScript for Loops” an
interesting extension to these suggestions.

Given that this is a data-centric application with a potentially large quantity
of data in each object or array, you should consider a refactor to use one of
these. From a scalability perspective, you want to shave off as many
milliseconds as possible from process-heavy routines, because these can
build up when hundreds or thousands of elements are on the page.

PROBLEM 8

Problem: JSON strings are being built in-memory using string
concatenation.

Feedback: This could be approached in more optimal ways. For example,
why not use JSON.stringify(), a method that accepts a JavaScript
object and returns its JSON equivalent. Objects can generally be as
complex or as deeply nested as you wish, and this will almost certainly
result in a simpler, shorter solution.

var myData = {};
myData.dataA = [’a’, ’b’, ’c’, ’d’];
myData.dataB = {
 ’animal’: ’cat’,
 ’color’: ’brown’
};
myData.dataC = {
 ’vehicles’: [{
 ’type’: ’ford’,
 ’tint’: ’silver’,
 ’year’: ’2015’
 }, {
 ’type’: ’honda’,
 ’tint’: ’black’,
 ’year’: ’2012’
 }]
};

Smashing eBook #13│JavaScript Essentials│ 43

http://javascriptweblog.wordpress.com/2010/10/11/rethinking-javascript-for-loops/
http://javascriptweblog.wordpress.com/2010/10/11/rethinking-javascript-for-loops/

myData.dataD = {
 ’buildings’: [{
 ’houses’: [{
 ’streetName’: ’sycamore close’,
 ’number’: ’252’
 }, {
 ’streetName’: ’slimdon close’,
 ’number’: ’101’
 }]
 }]
};
console.log(myData); //object
var jsonData = JSON.stringify(myData);

console.log(jsonData);
/*
{"dataA":["a","b","c","d"],"dataB":
{"animal":"cat","color":"brown"},"dataC":{"vehicles":
[{"type":"ford","tint":"silver","year":"2015"},
{"type":"honda","tint":"black","year":"2012"}]},"dataD":
{"buildings":[{"houses":[{"streetName":"sycamore
close","number":"252"},{"streetName":"slimdon
close","number":"101"}]}]}}
 */

As an extra debugging tip, if you would like to pretty-print JSON in your
console for easier reading, then the following extra arguments to
stringify() will achieve this:
JSON.stringify({ foo: "hello", bar: "world" }, null, 4);

PROBLEM 9

Problem: The namespacing pattern used is technically invalid.

Feedback: While namespacing is implemented correctly across the rest of
the application, the initial check for namespace existence is invalid. Here’s
what you currently have:

Smashing eBook #13│JavaScript Essentials│ 44

if (!MyNamespace) {
 MyNamespace = { };
}

The problem is that !MyNamespace will throw a ReferenceError,
because the MyNamespace variable was never declared. A better pattern
would take advantage of boolean conversion with an inner variable
declaration, as follows:
if (!MyNamespace) {
 var MyNamespace = { };
}

//or
var myNamespace = myNamespace || {};

// Although a more efficient way of doing this is:
// myNamespace || (myNamespace = {});
// jsPerf test: http://jsperf.com/conditional-assignment

//or
if (typeof MyNamespace == ’undefined’) {
 var MyNamespace = { };
}

This could, of course, be done in numerous other ways. If you’re interested
in reading about more namespacing patterns (as well as some ideas on
namespace extension), I recently wrote “Essential JavaScript Namespacing
Patterns.” Juriy Zaytsev also has a pretty comprehensive post on
namespacing patterns.

Conclusion
That’s it. Reviewing code is a great way to enforce and maintain quality,
correctness and consistency in coding standards at as high a level as
possible. I strongly recommend that all developers give them a try in their
daily projects, because they’re an excellent learning tool for both the

Smashing eBook #13│JavaScript Essentials│ 45

http://jsperf.com/conditional-assignment
http://jsperf.com/conditional-assignment
http://addyosmani.com/blog/essential-js-namespacing/
http://addyosmani.com/blog/essential-js-namespacing/
http://addyosmani.com/blog/essential-js-namespacing/
http://addyosmani.com/blog/essential-js-namespacing/
http://twitter.com/kangax
http://twitter.com/kangax
http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/
http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/
http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/
http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/

developer and the reviewer. Until next time, try getting your code reviewed,
and good luck with the rest of your project!

Smashing eBook #13│JavaScript Essentials│ 46

Find !e Right JavaScript Solution With
A 7-Step Test

Christian Heilmann

As Web developers and designers, we are spoilt for choice right now. To
build a complex Web application or even just spice up a website with some
highly interactive interface element, we have hundreds of pre-built solutions
to choose from. Every library comes with widgets and solutions, and every
developer tries to make a name for him or herself by releasing a funky
JavaScript solution to a certain interface problem. We can pick from dozens
of menus, image carousels, tabs, form validators and “lightboxes.”

Having this much choice makes it easy for us to pick and choose, which is
where things go wrong. In most cases, we measure the quality of a solution
by its convenience to us. Our main reasons for picking one solution over
another are:

• Does it do what I need it to do?

• Does it look cool?

• Does it sound easy to use?

• Would I want to use it?

• Does it use the framework I’m committed to?

The things you should really look for are different, though:

• How stable is the solution?
Is a good alternative available if this one doesn’t work?

Smashing eBook #13│JavaScript Essentials│ 47

• How easy is it to customize?
Do you need to be a JavaScript expert to modify the widget?

• How usable and accessible is it?
Are users who don’t have a mouse or are on a mobile browser blocked?

• Do you understand what’s going on?
Would you be able to fix a problem and explain it to others?

• Is it a contained solution?
Will other scripts be able to interfere with it, or would it contaminate the
document?

• How dedicated is the developer?
Will the solution be maintained in the future?

• What is supported, and how can you extend functionality?
A new browser and client request is always around the corner?In this
article, we’ll show some ways to find out more about these issues. First
of all, though, understanding what it means to develop for the Web is
important.

It’s Not About You
Most of the reasons why we choose a particular solution right away are very
much about us, and this is where we tread on thin ice. We don’t consume
what we put on the Web; rather, people we don’t know do, and we can’t
make assumptions about their ability, set-up, technical understanding or
taste. We won’t make our product a success; we only build it, and thus we
are the worst testers of it possible.

I’ve been developing for the Web professionally for over 10 years now,
working on everything from personal blogs to multi-language enterprise
CMS solutions to complex Web applications, and I’ve learnt one thing on the
journey: never build for yourself or the client. Instead, build for the people

Smashing eBook #13│JavaScript Essentials│ 48

who will use the product and the poor person who has to take over the
project when you leave.

Much as we have to act now to minimize our massive carbon footprint, we
need to leave a cleaner Web behind. To keep the Web a thriving market
and sustainable work environment, we have to change the way we work in it
and leave behind unmaintainable, bloated and semi-workable, albeit pretty,
solutions. We have to make it easier for people to use Web applications and
save other developers from wasting hours trying to understand what we did
when they are asked to change or extend it at a later stage.

Introducing !e 7-Step Test For JavaScript Widgets
To this end, I’ve put together a seven-step test to apply to any out-of-the-
box widget you find. All of the recommendations have a rationale, so please
ponder it before dismissing the arguments as “elitist” or “not really suitable
to our environment.”

Let’s not forget that even when something is free, its developer will try to
sell it to you for the fame, and many a solution is defended tooth and nail on
mailing lists instead of being changed or updated. The reason is that, as
developers we are always on the move. Maintaining and extending an old
solution is not as sexy as creating a cool new one. This leads to ruins that
once enjoyed love when they were state of the art but now rust away on the
Internet.

To kick the tires of any out-of-the box solution, I mostly use one tool: the
Firefox Web developer toolbar. It is available on the Firefox Add-On website
and gives you an easy way to test what’s happening in your widget of
choice.

Okay, here goes: seven things to test when deciding on a JavaScript
solution.

Smashing eBook #13│JavaScript Essentials│ 49

https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60

1. What Happens If JavaScript Is Turned Off?
The first test I do with any widget is turn off JavaScript… not after the
document has loaded but before. Turning off JavaScript with the Web
developer toolbar is very easy. Simply select “Disable All JavaScript” from
the “Disable” menu and reload the page:

The rationale is that there are a lot of reasons why JavaScript may not be
used: company proxies or personal firewalls could filter it out, other scripts
could create errors and mess with yours, or the system in use could simply
not have JavaScript enabled. Think of mobile environments, for example.

You don’t need full functionality when JavaScript is not available, just a
working interface that doesn’t overload users and interactive elements that

Smashing eBook #13│JavaScript Essentials│ 50

work. If a button does nothing when users activate it, those users will stop
trusting you; after all, you haven’t kept your promises.

Overloading is another issue. A lot of widgets use CSS and JavaScript to
squeeze a lot of content into a very small space: think tabbed content
elements and image carousels. What should be their fallback? If you turn off
JavaScript and have 50 pictures where you planned for 2, then that would
be a good user experience. A better fallback would be a server-side
solution for the same functionality or to show the first 2 and then offer a link
to a gallery page with the remaining pictures.

Sometimes the JavaScript for a particular widget is actually very good but
the demo websites have been done badly. Hiding elements with CSS and
then revealing them with JavaScript, for example, is very common. But if
JavaScript is turned off, the solution will break. Good demos and solutions
use JavaScript to add a class to the body of the document and make all of
the CSS dependent on that class.

The trick that any good JavaScript widget should do is to make any
functionality depend on JavaScript by using JavaScript; that way, you never
have any functionality that won’t work. This technique is called “unobtrusive
JavaScript,” and I have written a course on it and set a few rules for it a
while back.

2. How To Change !e Look, Feel And Content?
A widget whose look and feel are hard-coded is a pain to maintain. You
cannot expect future designers to know how to change a certain color by
hunting through your JavaScript files. This is how we end up with bloated
CSS files, because people add random IDs and classes to enhance the
specificity of their CSS selectors.

Good widgets have their look and feel contained in a CSS file and give you
handles (i.e. dynamically applied classes) to apply your own styling. If you

Smashing eBook #13│JavaScript Essentials│ 51

http://onlinetools.org/articles/unobtrusivejavascript/
http://onlinetools.org/articles/unobtrusivejavascript/
http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/
http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/

find yourself having to change JavaScript to change the look and feel, alarm
bells should go off in your head.

This gets worse if you have content such as text labels in the JavaScript or if
only a fixed number of elements can be displayed (as in the case of
navigation menus). Labels and number of elements are what change the
most in any Web product. For starters, you will probably roll out your
product across different markets and will have to translate the buttons and
menus.

Good gadgets have configuration objects that allow you to change the
number of elements and define the text labels without having to change the
main JavaScript. The reason for this is that the functional part of the widget
should be separated from the maintainer. If the widget has a security or
performance problem, you should be able to replace it without losing your
configuration and localization work. Otherwise people would be very likely
to keep insecure code on the Web, which is one of the reasons why our
inboxes are full of spam.

3. How Usable And Semantic Is !e Final Product?
A lot of widget creators are very happy to announce that their products are
“Web-standards compliant” and accessible because of it. While Web-
standards compliance is important, it does not indicate the quality or
usefulness of the product. One cannot really validate semantics with an
automated tool. For example, the following examples are both valid HTML:

<div class="menu">
 <div class="section">
 Animals
 <div class="subsection">
 <div class="item">Giraffe</div>
 <div class="item">Donkey</div>
 <div class="item">Cheetah</div>

Smashing eBook #13│JavaScript Essentials│ 52

http://dev.opera.com/articles/view/json-configuration-for-javascript/
http://dev.opera.com/articles/view/json-configuration-for-javascript/

 <div class="item">Hippo</div>
 </div>
 </div>
 <div class="section">
 Stones
 <div class="subsection">
 <div class="item">Diamond</div>
 <div class="item">Ruby</div>
 <div class="item">Onyx</div>
 </div>
 </div>
</div>

<ul class="menu">
 <button>Animals</button>

 Giraffe
 Donkey
 Cheetah
 Hippo

 <button>Stones</button>

 Diamond
 Ruby
 Onyx

The second example works without JavaScript and uses much less HTML. It
also requires much less CSS for styling because you would simply take
advantage of the cascade.

Furthermore, the HTML on which the widget is based is only half the story.
What the JavaScript generates also needs to be valid, usable and

Smashing eBook #13│JavaScript Essentials│ 53

accessible, and you can check this when you check the generated source in
the Web developer toolbar.

To do this, right-click anywhere in the document and select Web Developer
→ View Source → View Generated Source:

Usability and accessibility (accessibility being, in essence, merely a more
comprehensive understanding of usability) are harder to test. But one very
good test is to check how keyboard-accessible a widget it. Keyboard-only
users are on the rise, and widgets that work only with mouse-over events
would not usable on a touchscreen mobile, for instance. Many widgets
provide basic keyboard access (e.g. using the Tab key to jump from one link
to another, and the Enter key to activate each), but this is not proper
accessibility.

A menu, for example, should not be navigated by tabbing through each of
the items because this would require far too many keystrokes. Instead, the
user should be able to tab to the main menu bar and from there use the
cursor keys to navigate.

A modal pop-up (commonly called a lightbox) should be able to be closed
with a keyboard by hitting the Escape key or by tabbing to the “Close”

Smashing eBook #13│JavaScript Essentials│ 54

button. If it is a multi-item lightbox, you should also be able to navigate the
items with the cursor keys.

The W3C’s WAI websites have some great examples of how widgets should
react to keyboard use, and Todd Kloots of Yahoo does a great job of
explaining the techniques behind good keyboard usability (also as a video
and using YUI3 and focusing on WAI-ARIA). Patrick Lauke of Opera also
wrote a great article on the subject and gave a presentation at last year’s
Future of Web Design. If you are a Mac user, make sure to turn on keyboard
access before declaring a widget faulty.

People also need to be able to resize the text in their browser. So test the
widgets at several text sizes. Using Internet Explorer 6 for this is important
because it is the main culprit in font-resizing issues. Newer browsers do a
much better job of zooming the entire interface, but you cannot expect end
users to know how to use them.

4. Do You Understand What’s Going On?
If you’ve read the Harry Potter books (or even seen the movies), you know
that you shouldn’t trust magic without knowing what is going on. A book that
responds to your writing is as suspicious as a widget that does something
so amazing that you have no clue how it happened.

Remember, if the doo-dad stops working, you will be asked to fix it or
explain what went wrong. Therefore, it is important to at least know the
basics of what JavaScript spell was cast to transform a list of images into an
all-singing, all-dancing carousel.

Good widgets have technical documentation for that kind of thing, and
some even fire off custom events that tell you when something is
happening. That way, you can debug the tool by waiting for these events
and analyzing the current state of play. It also allows you to extend
functionality, which we’ll come back to in step #7.

Smashing eBook #13│JavaScript Essentials│ 55

http://www.w3.org/TR/wai-aria-practices/#kbd_generalnav
http://www.w3.org/TR/wai-aria-practices/#kbd_generalnav
http://www.yuiblog.com/blog/2009/02/23/managing-focus/
http://www.yuiblog.com/blog/2009/02/23/managing-focus/
http://www.yuiblog.com/blog/2009/02/23/managing-focus/
http://www.yuiblog.com/blog/2009/02/23/managing-focus/
http://developer.yahoo.com/yui/theater/video.php?v=kloots-a11y
http://developer.yahoo.com/yui/theater/video.php?v=kloots-a11y
http://developer.yahoo.com/yui/theater/video.php?v=kloots-yuiconf2009-a11y
http://developer.yahoo.com/yui/theater/video.php?v=kloots-yuiconf2009-a11y
http://ericmiraglia.com/blog/?p=132
http://ericmiraglia.com/blog/?p=132
http://24ways.org/2009/dont-lose-your-focus
http://24ways.org/2009/dont-lose-your-focus
http://www.splintered.co.uk/news/112/
http://www.splintered.co.uk/news/112/
http://www.456bereastreet.com/archive/200906/enabling_keyboard_navigation_in_mac_os_x_web_browsers/
http://www.456bereastreet.com/archive/200906/enabling_keyboard_navigation_in_mac_os_x_web_browsers/
http://www.456bereastreet.com/archive/200906/enabling_keyboard_navigation_in_mac_os_x_web_browsers/
http://www.456bereastreet.com/archive/200906/enabling_keyboard_navigation_in_mac_os_x_web_browsers/

5. Does It Play Well With Others?
The biggest problem with any JavaScript on the Web right now is that its
security model gives every script on the page the same rights. This means
that one bad script can mess up the user’s whole experience because it
may override parts of another script.

The places where scripts can clash are in variable and function names and
events. If your widget does not protect its variables and function names or if
it applies event functionality to elements without checking that other scripts
are doing the same, you’ll have a problem.

Say you have an element with the ID menu, and you have one script that
turns its HTML content into a drop-down menu and another that enhances
the different links by showing a beautiful roll-over message. If neither of
these scripts append to the existing functionality and just apply it, you’ll
have either a beautiful roll-over or a menu, depending on which script is
applied last.

The good news is that for widgets that are based on libraries, this “event
clash” is very unlikely because libraries work around that out of the box. You
can test for the problem of function and variable names that can be
overwritten by other scripts. JSLint is a tool and website where you can
check JavaScript for syntactical problems such as unprotected variables. It
is a very strict tool, though, and not all of its warnings are actually deal-
breakers. But testing with JSLint is the hallmark of a professional Web
developer. You do want your code to play well with others.

6. How Dedicated Is !e Maintainer?
When choosing a widget, you want to be very sure that the maintainer is
dedicated to keeping it up to date and to fixing the script for future browsers
and environments. This is rarely the case, and a lot of software is released

Smashing eBook #13│JavaScript Essentials│ 56

http://www.jslint.com/
http://www.jslint.com/

with an “as is” statement, absolving the creator of any liability for problems it
may cause now or in the future.

Software, especially the kind that is executed in the browser and for Web
consumption, has to constantly evolve. Things that were once state of the
art might be clumsy now. Some software turned out to perform poorly or be
outright security holes.

Whenever people claim that we have a great baseline environment on the
Web for screen space and processing power, something comes along that
debunks it. Right now, testing on dual or quad-core processors with
resolutions starting at 1280 might be normal for us designers, but given the
sales figures of smartphones and netbooks, planning for audiences other
than these high-end ones might be a good idea.

For developers, maintenance is the most boring task. When we release
awesome widgets to the world, we don’t want to think about that phase of
software delivery. Granted, most widgets are released as open source, but
sadly, not many developers fix or improve on other people’s work; building
and releasing something almost identical but slightly modified is much more
fun.

As the user of someone else’s widget, you don’t want this to fly back in your
face, so you need to see just how dedicated the developer is. A few
questions to ask are:

• Is there a simple way to report bugs?

• Is there trail of improvements and bug fixes?

• Is there a history of comments and changes to the widget based on that
feedback?

• Has the widget been used in real scenarios, large projects or
implementations similar to yours? What were the experiences of those
who used it?

Smashing eBook #13│JavaScript Essentials│ 57

• Does the solution have a community (i.e. are there a few people on
mailing lists or in forums helping each other out, rather than overloading
the original developer)?

If the developer has no big personal stake in the widget or there is no group
of developers or commercial users, then there is a high chance that you will
see few or no fixes or improvements in future, and you will be responsible
for supporting the next browser version that behaves badly.

7. Is !ere A Testing Plan, And Is Upgrading And
Extending Easy?
One last thing to consider is what will happen in future. Claims that the
widget will “work in every environment” are bogus because that cannot be
done. The great power of the Web is that software solutions can adapt to
the environment they are being used in. If you use Netscape 4, you should
see a few images; if you use the newest Webkit browser, you should see a
fancy image carousel with animation and fading; that sort of thing.

A good widget will have a proven test report covering which browsers and
environments it has been tested in and what the known issues are. There
will always be issues, and claiming otherwise is arrogant or ignorant.

Upgrading your widget should be easy and painless, and there should be
some versioning in place, with new versions being backwards-compatible.

Extending the widget should be easy. We spoke earlier about not being
limited to a particular number of items or a certain look and feel. But if you
really use a widget, you will find you have to override certain functionality
and react to various changes. Good widgets either have an API (a
programming interface to extend it) or fire custom events for you to listen to.
Custom events are “interesting moments” in a user’s interaction with the
widget. For example, a button will tell the script when you have activated it,

Smashing eBook #13│JavaScript Essentials│ 58

and if you write the widget a certain way, you can tell the world (or in this
case, other scripts) when something happens to it. You can notify that a
container has been opened, that data has returned from the Web or that a
menu was too large to be displayed to the right and had to be moved to the
left.

Widgets built with the Yahoo User Interface library, for example, come with a
lot of custom events:

This allows you to monitor what is going on (like for debugging purposes)
and extend functionality. The demo page for the AutoComplete control, for

Smashing eBook #13│JavaScript Essentials│ 59

http://developer.yahoo.com/yui/docs/YAHOO.widget.AutoComplete.html#events
http://developer.yahoo.com/yui/docs/YAHOO.widget.AutoComplete.html#events
http://developer.yahoo.com/yui/docs/YAHOO.widget.AutoComplete.html#events
http://developer.yahoo.com/yui/docs/YAHOO.widget.AutoComplete.html#events
http://developer.yahoo.com/yui/examples/autocomplete/ac_basic_xhr_log.html
http://developer.yahoo.com/yui/examples/autocomplete/ac_basic_xhr_log.html

example, displays in a logging console on the right what happens “under
the hood” when you use the auto-complete field.

By subscribing to these events in JavaScript, overriding the original
functionality for something new is pretty easy; in this case, we have an auto-
complete that returns photos and allows you to collect them.

Smashing eBook #13│JavaScript Essentials│ 60

http://developer.yahoo.com/yui/examples/autocomplete/ac_flickr_xml.html
http://developer.yahoo.com/yui/examples/autocomplete/ac_flickr_xml.html
http://developer.yahoo.com/yui/examples/autocomplete/ac_flickr_xml.html
http://developer.yahoo.com/yui/examples/autocomplete/ac_flickr_xml.html

Custom events are a great way to extend a widget while keeping the core code
easy to upgrade.

One Final Word On Size
One last thing to mention: some widget developers use a certain argument
to advocate for their solution but which is totally irrelevant to your decision,
and that is size.

Advertising-speak like “A drop-down menu in 20 lines of JavaScript” or “A
full featured lightbox in under 2 KB” is fun and good for the developer’s ego,
but in reality it is no measure of the quality of the solution. While you should
avoid JavaScript solutions that are massive (let’s say 100 KB), code that has
been written to be very generic and easy to extend will always be bigger
than code that has been written to serve a single purpose. Any widget
whose size is proudly trumpeted and is meant to be used by people who
are not as good at developing as the initial owner will get bigger over time

Smashing eBook #13│JavaScript Essentials│ 61

anyway. Developers like to play the numbers game, but maintainable code
is different than extreme number-crunching.

And if you get your kicks from this sort of thing, try the demo scene in which
Farbrausch proved with The Product in 2000 that you can fit a seven-minute
animation with music and synthesized voices into 64 KB.am

Smashing eBook #13│JavaScript Essentials│ 62

http://www.pouet.net/prod.php?which=1221
http://www.pouet.net/prod.php?which=1221

Ten Oddities And Secrets About
JavaScript

Andy Croxall

JavaScript. At once bizarre and yet beautiful, it is surely the programming
language that Pablo Picasso would have invented. Null is apparently an
object, an empty array is apparently equal to false, and functions are
bandied around as though they were tennis balls.

This article is aimed at intermediate developers who are curious about more
advanced JavaScript. It is a collection of JavaScript’s oddities and well-kept
secrets. Some sections will hopefully give you insight into how these
curiosities can be useful to your code, while other sections are pure WTF
material. So, let’s get started.

Data Types And Definitions

1. NULL IS AN OBJECT

Let’s start with everyone’s favorite JavaScript oddity, as well known as it is.
Null is apparently an object, which, as far as contradictions go, is right up
there with the best of them. Null? An object? “Surely, the definition of null is
the total absence of meaningful value,” you say. You’d be right. But that’s
the way it is. Here’s the proof:

alert(typeof null); //alerts 'object'

Despite this, null is not considered an instance of an object. (In case you
didn’t know, values in JavaScript are instances of base objects. So, every

Smashing eBook #13│JavaScript Essentials│ 63

number is an instance of the Number object, every object is an instance of
the Object object, and so on.) This brings us back to sanity, because if null
is the absence of value, then it obviously can’t be an instance of anything.
Hence, the following evaluates to false:

alert(null instanceof Object); //evaluates false

2. NAN IS A NUMBER

You thought null being an object was ridiculous? Try dealing with the idea of
NaN — “not a number” — being a number! Moreover, NaN is not considered
equal to itself! Does your head hurt yet?

alert(typeof NaN); //alerts 'Number'
alert(NaN === NaN); //evaluates false

In fact NaN is not equal to anything. The only way to confirm that something
is NaN is via the function isNaN().

3. AN ARRAY WITH NO KEYS == FALSE (ABOUT TRUTHY AND FALSY)

Here’s another much-loved JavaScript oddity:

alert(new Array() == false); //evaluates true

To understand what’s happening here, you need to understand the
concepts of truthy and falsy. These are sort of true/false-lite, which will
anger you somewhat if you majored in logic or philosophy.

I’ve read many explanations of what truthy and falsy are, and I feel the
easiest one to understand is this: in JavaScript, every non-boolean value has
a built-in boolean flag that is called on when the value is asked to behave
like a boolean; like, for example, when you compare it to a boolean.

Because apples cannot be compared to pears, when JavaScript is asked to
compare values of differing data types, it first “coerces” them into a common

Smashing eBook #13│JavaScript Essentials│ 64

data type. False, zero, null, undefined, empty strings and NaN all end
up becoming false — not permanently, just for the given expression. An
example to the rescue:

var someVar = 0;
alert(someVar == false); //evaluates true

Here, we’re attempting to compare the number 0 to the boolean false.
Because these data types are incompatible, JavaScript secretly coerces our
variable into its truthy or falsy equivalent, which in the case of 0 (as I said
above) is falsy.

You may have noticed that I didn’t include empty arrays in the list of falsies
above. Empty arrays are curious things: they actually evaluate to truthy but,
when compared against a boolean, behave like a falsy. Confused yet? With
good cause. Another example perhaps?

var someVar = []; //empty array
alert(someVar == false); //evaluates true
if (someVar) alert('hello'); //alert runs, so someVar
evaluates to true

To avoid coercion, you can use the value and type comparison operator,
===, (as opposed to ==, which compares only by value). So:
var someVar = 0;
alert(someVar == false); //evaluates true – zero is a falsy
alert(someVar === false); //evaluates false – zero is a
number, not a boolean

Phew. As you’ve probably gathered, this is a broad topic, and I recommend
reading up more on it — particularly on data coercion, which, while not
uniquely a JavaScript concept, is nonetheless prominent in JavaScript.

I discuss the concept of truthy and falsy and data coercion more over here.
And if you really want to sink your teeth into what happens internally when
JavaScript is asked to compare two values, then check out section 11.9.3 of
the ECMA-262 document specification.

Smashing eBook #13│JavaScript Essentials│ 65

http://www.mitya.co.uk/blog/2011/Apr/Twisted-logic-understanding-truthy-and-falsy-174
http://www.mitya.co.uk/blog/2011/Apr/Twisted-logic-understanding-truthy-and-falsy-174
http://www.mozilla.org/js/language/E262-3.pdf
http://www.mozilla.org/js/language/E262-3.pdf
http://www.mozilla.org/js/language/E262-3.pdf
http://www.mozilla.org/js/language/E262-3.pdf

Regular Expressions

4. REPLACE() CAN ACCEPT A CALLBACK FUNCTION

This is one of JavaScript’s best-kept secrets and arrived in v1.3. Most usages
of replace() look something like this:

alert('10 13 21 48 52'.replace(/d+/g, '*')); //replace all
numbers with *

This is a simple replacement: a string, an asterisk. But what if we wanted
more control over how and when our replacements take place? What if we
wanted to replace only numbers under 30? This can’t be achieved with
regular expressions alone (they’re all about strings, after all, not maths). We
need to jump into a callback function to evaluate each match.

alert('10 13 21 48 52'.replace(/d+/g, function(match) {
 return parseInt(match) < 30 ? '*' : match;
}));

For every match made, JavaScript calls our function, passing the match into
our match argument. Then, we return either the asterisk (if the number
matched is under 30) or the match itself (i.e. no match should take place).

5. REGULAR EXPRESSIONS: MORE THAN JUST MATCH AND REPLACE

Many intermediate JavaScript developers get by just on match and
replace with regular expressions. But JavaScript defines more methods
than these two.

Of particular interest is test(), which works like match except that it
doesn’t return matches: it simply confirms whether a pattern matches. In this
sense, it is computationally lighter.

alert(/w{3,}/.test('Hello')); //alerts 'true'

Smashing eBook #13│JavaScript Essentials│ 66

The above looks for a pattern of three or more alphanumeric characters,
and because the string Hello meets that requirement, we get true. We
don’t get the actual match, just the result.

Also of note is the RegExp object, by which you can create dynamic regular
expressions, as opposed to static ones. The majority of regular expressions
are declared using short form (i.e. enclosed in forward slashes, as we did
above). That way, though, you can’t reference variables, so making dynamic
patterns is impossible. With RegExp(), though, you can.

function findWord(word, string) {
 var instancesOfWord = string.match(new RegExp('\b'+word
+'\b', 'ig'));
 alert(instancesOfWord);
}
findWord('car', 'Carl went to buy a car but had forgotten his
credit card.');

Here, we’re making a dynamic pattern based on the value of the argument
word. The function returns the number of times that word appears in string
as a word in its own right (i.e. not as a part of other words). So, our example
returns car once, ignoring the car tokens in the words Carl and card. It
forces this by checking for a word boundary (b) on either side of the word
that we’re looking for.

Because RegExp are specified as strings, not via forward-slash syntax, we
can use variables in building the pattern. This also means, however, that we
must double-escape any special characters, as we did with our word
boundary character.

Smashing eBook #13│JavaScript Essentials│ 67

Functions And Scope

6. YOU CAN FAKE SCOPE

The scope in which something executes defines what variables are
accessible. Free-standing JavaScript (i.e. JavaScript that does not run inside
a function) operates within the global scope of the window object, to which
everything has access; whereas local variables declared inside functions are
accessible only within that function, not outside.

var animal = 'dog';
function getAnimal(adjective) { alert(adjective+'
'+this.animal); }
getAnimal('lovely'); //alerts 'lovely dog';

Here, our variable and function are both declared in the global scope (i.e. on
window). Because this always points to the current scope, in this example it
points to window. Therefore, the function looks for window.animal, which
it finds. So far, so normal. But we can actually con our function into thinking
that it’s running in a different scope, regardless of its own natural scope. We
do this by calling its built-in call() method, rather than the function itself:
var animal = 'dog';
function getAnimal(adjective) { alert(adjective+'
'+this.animal); };
var myObj = {animal: 'camel'};
getAnimal.call(myObj, 'lovely'); //alerts 'lovely camel'

Here, our function runs not on window but on myObj — specified as the first
argument of the call method. Essentially, call() pretends that our function
is a method of myObj (if this doesn’t make sense, you might want to read up
on JavaScript’s system of prototypal inheritance). Note also that any
arguments we pass to call() after the first will be passed on to our
function — hence we’re passing in lovely as our adjective argument.

Smashing eBook #13│JavaScript Essentials│ 68

I’ve heard JavaScript developers say that they’ve gone years without ever
needing to use this, not least because good code design ensures that you
don’t need this smoke and mirrors. Nonetheless, it’s certainly an interesting
one.

As an aside, apply() does the same job as call(), except that
arguments to the function are specified as an array, rather than as individual
arguments. So, the above example using apply() would look like this:

getAnimal.apply(myObj, ['lovely']); //func args sent as array

7. FUNCTIONS CAN EXECUTE THEMSELVES

There’s no denying it:

(function() { alert('hello'); })(); //alerts 'hello'

The syntax is simple enough: we declare a function and immediately call it
just as we call other functions, with () syntax. You might wonder why we
would do this. It seems like a contradiction in terms: a function normally
contains code that we want to execute later, not now, otherwise we
wouldn’t have put the code in a function.

One good use of self-executing functions (SEFs) is to bind the current values
of variables for use inside delayed code, such as callbacks to events,
timeouts and intervals. Here is the problem:

var someVar = 'hello';
setTimeout(function() { alert(someVar); }, 1000);
var someVar = 'goodbye';

Newbies in forums invariably ask why the alert in the timeout says
goodbye and not hello. The answer is that the timeout callback function
is precisely that — a callback — so it doesn’t evaluate the value of someVar
until it runs. And by then, someVar has long since been overwritten by
goodbye.

Smashing eBook #13│JavaScript Essentials│ 69

SEFs provide a solution to this problem. Instead of specifying the timeout
callback implicitly as we do above, we return it from an SEF, into which we
pass the current value of someVar as arguments. Effectively, this means we
pass in and isolate the current value of someVar, protecting it from
whatever happens to the actual variable someVar thereafter. This is like
taking a photo of a car before you respray it; the photo will not update with
the resprayed color; it will forever show the color of the car at the time the
photo was taken.

var someVar = 'hello';
setTimeout((function(someVar) {
 return function() { alert(someVar); }
})(someVar), 1000);
var someVar = 'goodbye';

This time, it alerts hello, as desired, because it is alerting the isolated
version of someVar (i.e. the function argument, not the outer variable).

!e Browser

8. FIREFOX READS AND RETURNS COLORS IN RGB, NOT HEX

I’ve never really understood why Mozilla does this. Surely it realizes that
anyone interrogating computed colors via JavaScript is interested in hex
format and not RGB. To clarify, here’s an example:

<!--
#somePara { color: #f90; }
-->

Hello, world!

<script>
var ie = navigator.appVersion.indexOf('MSIE') != -1;
var p = document.getElementById('somePara');

Smashing eBook #13│JavaScript Essentials│ 70

alert(ie ? p.currentStyle.color : getComputedStyle(p,
null).color);
</script>

While most browsers will alert ff9900, Firefox returns rgb(255, 153,
0), the RGB equivalent. Plenty of JavaScript functions are out there for
converting RGB to hex.

Note that when I say computed color, I’m referring to the current color,
regardless of how it is applied to the element. Compare this to style, which
reads only style properties that were implicitly set in an element’s style
attribute. Also, as you’ll have noticed in the example above, IE has a
different method of detecting computed styles from other browsers.

As an aside, jQuery’s css() method encompasses this sort of computed
detection, and it returns styles however they were applied to an element:
implicitly or through inheritance or whatever. Therefore, you would relatively
rarely need the native getComputedStyle and currentStyle.

Miscellaneous

9. 0.1 + 0.2 !== 0.3

This one is an oddity not just in JavaScript; it’s actually a prevailing problem
in computer science, and it affects many languages. The output of this is
0.30000000000000004.

This has to do with an issue called machine precision. When JavaScript tries
to execute the line above, it converts the values to their binary equivalents.

This is where the problem starts. 0.1 is not really 0.1 but rather its binary
equivalent, which is a near-ish (but not identical) value. In essence, as soon
as you write the values, they are doomed to lose their precision. You might
have just wanted two simple decimals, but what you get, as Chris Pine

Smashing eBook #13│JavaScript Essentials│ 71

notes, is binary floating-point arithmetic. Sort of like wanting your text
translated into Russian but getting Belorussian. Similar, but not the same.

More is going on here, but it’s beyond the scope of this article (not to
mention the mathematical capabilities of this author).

Workarounds for this problem are a favorite on computer science and
developer forums. Your choice, to a point, comes down to the sort of
calculations you’re doing. The pros and cons of each are beyond the scope
of this article, but the common choice is between the following:

1. Converting to integers and calculating on those instead, then
converting back to decimals afterward; or

2. Tweaking your logic to allow for a range rather than a specific result.

3. So, for example, rather than…

var num1 = 0.1, num2 = 0.2, shouldEqual = 0.3;
alert(num1 + num2 == shouldEqual); //false

… we would do this:

alert(num1 + num2 > shouldEqual - 0.001 && num1 + num2 <
shouldEqual + 0.001); //true

Translated, this says that because 0.1 + 0.2 is apparently not 0.3, check
instead that it’s more or less 0.3 — specifically, within a range of 0.001 on
either side of it. The obvious drawback is that, for very precise calculations,
this will return inaccurate results.

10. UNDEFINED CAN BE DEFINED

OK, let’s end with a silly, rather inconsequential one. Strange as it might
sound, undefined is not actually a reserved word in JavaScript, even

Smashing eBook #13│JavaScript Essentials│ 72

http://dev.opera.com/articles/view/why-i-love-ecmascript-4-real-decimals/
http://dev.opera.com/articles/view/why-i-love-ecmascript-4-real-decimals/

though it has a special meaning and is the only way to determine whether a
variable is undefined. So:

var someVar;
alert(someVar == undefined); //evaluates true

So far, so normal. But:

undefined = "I'm not undefined!";
var someVar;
alert(someVar == undefined); //evaluates false!

You can also check Mozilla’s list of all reserved words in JavaScript for
future reference.

Smashing eBook #13│JavaScript Essentials│ 73

https://developer.mozilla.org/en/JavaScript/Reference/Reserved_Words
https://developer.mozilla.org/en/JavaScript/Reference/Reserved_Words

!e Seven Deadly Sins Of JavaScript
Implementation

Christian Heilmann

Using JavaScript has become increasingly easy over the last few years.
Whereas back in the day we needed to know the quirks of every browser,
now many libraries such as jQuery, YUI, Dojo and MooTools allow someone
who doesn’t even know JavaScript to spruce up boring HTML documents
with impressive and shiny effects. By piggy-backing on the CSS selector
engine, we have moved away from the complexity and inconsistencies of
the DOM and made things much easier.

If you look at some of the code that has been released, though, we do seem
to have taken a step backwards. In gaining easier access, we also became a
bit sloppy with our code. Finding clearly structured, easy-to-maintain jQuery
code is quite tough, which is why many plug-ins do the same thing. Writing
one yourself is faster than trying to fathom what other developers have
done.

The rules for solid, maintainable and secure JavaScript haven’t changed,
though. So, let’s run through the seven sins of JavaScript development that
will bite you in the backside when you have to maintain the code later on or
hand it over to another party.

We’ve all had to work with code written by other people. We have despaired
over the lack of maintainability and documentation as well as weird logic.
Funny enough, as developers, we started to see this as normal and got used
to ignoring other people’s work and instead writing new code for the same
problems over and over, as if we were subconsciously trying to secure our

Smashing eBook #13│JavaScript Essentials│ 74

jobs by leaving behind unmaintainable code—code that only we
understood, while complaining that no good solutions were out there.

Sins Of Our Fathers: Browser-Specific Code
One of the main obstacles that kept us from evolving as developers was
that JavaScript was largely browser-specific.

This was mainly because browsers did not support the standards (or were
shipped before the governing bodies agreed on standards at all), and
because we had to deliver our work before the competition and without
extending the overly optimistic deadline set by our project managers.

This happens to be one reason why Internet Explorer 6 refuses to die.
Hundreds of expensive software packages that are being used in offices
worldwide were built when this browser was state of the art. This—and the
monoculture that advocated using one software vendor for everything from
the operating system to documents to spreadsheets to the browser—is the
reason why companies now can’t simply discontinue support for it. It also
means that newer versions of IE will always have to support the rendering
mistakes of IE6 in one way or another. IE6 is the Frankenstein of the
Internet, haunting its creators, terribly misunderstood by the townsfolk, who
would sooner kill it, burn it and dance around it than make any sense of it.

The good news is that you won’t find many scripts these days that begin
with if(document.all){} and continue with else
if(document.layers){}. If you do find one, please send its creator a
brief email encouraging them to move on or, better yet, to redirect their
website to a better script that is actually being maintained.

Smashing eBook #13│JavaScript Essentials│ 75

LIBRARIES TO THE RESCUE

The job of JavaScript libraries such as jQuery, YUI, MooTools, Dojo and
Glow is to make JavaScript development predictable and to relieve
developers of the living hell that we call browser support. In other words,
they fix random bugs in browsers and free us to adopt standards without
worrying that certain browsers won’t recognize them.

For example, the DOM method getElementById(id) should be
straightforward: find the element with the ID id and return it. But because
some versions of IE and Opera also return elements that have the name
attribute of id, jQuery solves the problem this way:

var elem;

elem = document.getElementById(match[2]);

if (elem) {
// Handle the case where IE and Opera return items
// by name instead of ID
if (elem.id !== match[2]) {
return rootjQuery.find(selector);
}

// Otherwise, we inject the element directly into the jQuery
object
this.length = 1;
this[0] = elem;
}

This is where libraries are awfully useful and is why JavaScript libraries are
here to stay. Browsers will always do things wrong, and old browsers will not
be upgraded by end users, either because of the aforementioned company
regulations or because people simply don’t care to keep up with the times.

Smashing eBook #13│JavaScript Essentials│ 76

http://github.com/jquery/jquery/blob/master/src/core.js
http://github.com/jquery/jquery/blob/master/src/core.js

So, while the practice of building software for certain browsers is on the
decline (at least for JavaScript—with CSS, we have a whole other headache
ahead of us), we still have to be mindful of certain sins.

Sin #1: Not Playing Nice With Other Scripts
Here’s the first one, which we still see a lot of on the Web. Sadly, it is very
common in demo code for APIs and Web services: global variables,
functions and DOM-1 event handlers.

What do I mean by these? Consider the following:

• Every script in the HTML document has the same rights as the others
and can, if need be, overwrite what other scripts have done before.

• If you define a variable or function name, and some other include uses
the same name, the initial one will be overwritten.

• The same applies to event handlers if you attach them the old-school
onEvent way.

Say you have the script script_one.js:

x = 5;
function init(){
 alert('script one init');
 document.getElementsByTagName('h1')[0].onclick = function(){
 this.style.background = 'blue';
 }
}
alert('x is '+x);
window.onload = init;

Smashing eBook #13│JavaScript Essentials│ 77

And immediately after this one, you include another script,
script_two.js:

x = 10;
function init(){
 alert('script two init');
 document.getElementsByTagName('h1')[0].onclick = function(){
 this.style.color = 'white';
 }
}
alert('x is '+x);
window.onload = init;

If you open this document in a browser, you will find that x turns from 5 to 10
and that the first init() is never called. The script two init
alert() does not come up, nor does the h1 get a blue background when
you click it. Only the text turns to white, which renders it invisible.

The solution is not to use onEvent handlers, but rather the proper DOM
level 2 event handlers (they don’t work in IE, but let’s not worry about that at
the moment—remember, this is what libraries are for). Furthermore, wrap
your functions in another with a more unique name to prevent them from
overriding each other.

var scriptOne = function(){
 var x = 5;
 function init(){
 alert('script one init');
 document.getElementsByTagName('h1')[0].addEventListener(
 'click',
 function(e){
 var t = e.target;
 t.style.background = 'blue';
 },
 false
);
 }
 alert('x inside is '+x);

Smashing eBook #13│JavaScript Essentials│ 78

http://icant.co.uk/articles/sins/sins_globals.html
http://icant.co.uk/articles/sins/sins_globals.html

 return {init:init};
}();
window.addEventListener('load',scriptOne.init,false);
alert('x outside is '+x);

var scriptTwo = function(){
 var x = 10;
 function init(){
 alert('script two init');
 document.getElementsByTagName('h1')[0].addEventListener(
 'click',
 function(e){
 var t = e.target;
 t.style.color = 'white';
 },
 false
);
 }
 alert('x inside is '+x);
 return {init:init};
}();
window.addEventListener('load',scriptTwo.init,false);
alert('x outside is '+x);

If you run this in a browser (not Internet Explorer 6), everything will come up
as you expect: x is first 5, then 10 on the inside, and the heading turns blue
and white when you click it. Both init() functions are called, too.

You also get an error. Because x is not defined outside the functions, the
alert('x outside is '+x); never works.

The reason is that by moving the x into the scriptOne and scriptTwo
functions and adding the var keyword in front of them, we have made them
a part of those functions but hid them from the outside world. This is called a
closure and is explained in detail here. It is probably the most powerful
feature of JavaScript.

Smashing eBook #13│JavaScript Essentials│ 79

http://icant.co.uk/articles/sins/sins_globals_fixed.html
http://icant.co.uk/articles/sins/sins_globals_fixed.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures

Using closures and var keywords, you won’t have the problem of variables
with similar names overriding each other. This also applies in jQuery: you
should namespace your functions.

This can be tough to grasp, so let’s look at a simpler example:

var x = 4;
var f = 3;
var me = 'Chris';
function init(){}
function load(){}

All of these are global variables and functions now. Any other script having
the same variables will override these.

You can nest them in an object to avoid this:

var longerAndMoreDistinct = {
 x : 4,
 f : 3,
 me : 'Chris',
 init : function(){},
 load : function(){}
}

That way, only the longerAndMoreDistinct is global. If you want to run
this function, you now have to call longerAndMoreDistinct.init()
instead of init(). You can reach me as longerAndMoreDistinct.me
and so on. I don’t like this because I have to switch from one notation to
another. So, we can do the following:

var longerAndMoreDistinct = function(){
 var x = 4;
 var f = 3;
 var me = 'Chris';
 function init(){}
 function load(){}
}();

Smashing eBook #13│JavaScript Essentials│ 80

http://jquery-howto.blogspot.com/2009/01/namespace-your-javascript-function-and.html
http://jquery-howto.blogspot.com/2009/01/namespace-your-javascript-function-and.html

You define longerAndMoreDistinct as the outcome of a function
without a name that gets immediately executed (this is the () on the last
line). This now means that all of the variables and functions inside exist only
in this world and cannot be accessed from outside at all. If you want to make
them accessible from outside, you need to return them to the outside world:

var longerAndMoreDistinct = function(){
 var x = 4;
 var f = 3;
 var me = 'Chris';
 function load(){}
 return {
 init:function(){}
 }
}();

Now init() is available as longerAndMoreDistinct.init() again.
This construct of wrapping things in an anonymous function and returning
some of them is called the Module pattern, and it keeps your variables safe.
Personally, I still hate the shift in syntax, so I came up with the revealing
module pattern. Instead of returning the real function, all I do is return a
pointer to it:

Smashing eBook #13│JavaScript Essentials│ 81

http://www.wait-till-i.com/2007/07/24/show-love-to-the-module-pattern/
http://www.wait-till-i.com/2007/07/24/show-love-to-the-module-pattern/
http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://www.wait-till-i.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/

var longerAndMoreDistinct = function(){
 var x = 4;
 var f = 3;
 var me = 'Chris';
 function load(){}
 function init(){}
 return {
 init:init
 }
}();

This way, I can make things either available or not available simply by
adding to the object that is returned.

If you don’t need to give anything to the world and just want to run some
code and keep all of your variables and function names safe, you can
dispense with the name of the function:

(function(){
 var x = 4;
 var f = 3;
 var me = 'Chris';
 function load(){}
 function init(){}
})();

Using var and wrapping code in this construct makes it inaccessible to the
outside world, but still makes it execute.

You may find this to be complex stuff, but there is a good way to check your
code. JSLint is a validator for JavaScript, much like the HTML or CSS
validators, and it tells you all the things that might be wrong with your code.

Sin #2: Believing Instead Of Testing
The next big sin related to implementing JavaScript is expecting everything
to go right: every parameter being in the right format, every HTML element

Smashing eBook #13│JavaScript Essentials│ 82

http://www.jslint.com/
http://www.jslint.com/

you try to enhance being truly available, and every end user entering
information in the right format. This will never be the case, and that last
assumption is an especially bad one because it allows malicious users to
inject dangerous code.

When you write JavaScript and give it to the world or integrate it in a
product that will be maintained by a third party, a little paranoia is a good
thing.

typeof is your friend. Regular expressions are your friend. indexOf(),
split and length are your friends. In other words, do everything you can
to make sure that incoming data is the right format.

You will get a lot of errors with native JavaScript; if you do anything wrong,
you’ll know what happened. The annoying thing about most JavaScript
libraries is that when they fail to execute some functionality, they do it
silently. The maintainer is left guessing and has to run through all the code
and start debugging with stop points (or—shudder!—alerts()) to reverse-
engineer where you entered instable code. To avoid this, simply wrap
whatever you can in a test case rather than try to access it.

Sin #3: Using !e Wrong Technology For !e Job
The biggest problem with JavaScript happens when you use the wrong tool
for the job. It makes maintenance a nightmare and deteriorates the code’s
quality. Use tools for the jobs they were meant for. This means:

• Absolutely essential content and mark-up should be in HTML,
regardless of the environment it will be displayed in.

• Any “look and feel” elements should be maintainable through CSS. You
should not have to scour through JavaScript to change a color.

Smashing eBook #13│JavaScript Essentials│ 83

• Any interaction with the user that goes beyond hover effects (which, by
definition, are an invitation to interact and not the interaction itself—
because they are inaccessible to keyboard users) should be done with
JavaScript.

The main reason why this is still a valid, pragmatic and sensible approach to
development is that as Web technologies get muddled (for example, you
can create content with CSS and JavaScript, animate and transform in CSS
and—if you really want—paint with HTML), people’s skills and interests in
these different technologies vary quite a bit.

Semantic mark-up buffs are not much interested in applying closures in
JavaScript. JavaScript developers are not much interested in the order of
elements in CSS. And CSS fans aren’t keen to learn how to make a
JavaScript animation run flicker-free.

This results in the same problems being solved over and over again, only
with different technologies. This is a market-wide problem: a lot of state-of-
the-art Canvas tricks were done in Flash years ago, their impact debated
and their problems fixed.

My favorite instance of this is when people write loops to hide a lot of
elements on the page to make them available later on.

Say this is your HTML:

<h2>Section 1</h2>
<div class="section">
 <p>Section 1 content</p>
</div>
<h2>Section 2</h2>
<div class="section">
 <p>Section 2 content</p>
</div>
<h2>Section 3</h2>
<div class="section">
 <p>Section 3 content</p>

Smashing eBook #13│JavaScript Essentials│ 84

</div>
<h2>Section 4</h2>
<div class="section">
 <p>Section 4 content</p>
</div>

The normal jQuery solution for this would be:

$(document).ready(function(){
 $('.section').hide();
 $('h2').click(function(e){
 $(this).next().toggle();
 })
});

And then you realize that making the style of the current section deviate
from that of the other sections would be great.

$(document).ready(function(){
 $('.section').hide();
 $('h2').click(function(e){
 $(this).next().toggle();
 $(this).next().css('background','#ccc');
 $(this).next().css('border','1px solid #999');
 $(this).next().css('padding','5px');
 })
});

A few things are wrong with this. For starters, you’ve made it hard to
maintain this by controlling the look and feel in JavaScript, not CSS (more on
this later). Secondly, performance: while jQuery is amazingly speedy, a lot of
code is still hidden under the hood in $('.section').hide(). The last,
and very painful, performance issue is the copied and pasted lines that set
the CSS. Don’t ask jQuery to find the next sibling four times and do
something to it. You could store the next() in a variable, but even that is
not needed if you chain. If you really need to set a lot of CSS in jQuery, use
a map:

Smashing eBook #13│JavaScript Essentials│ 85

http://icant.co.uk/articles/sins/sins_sectiondemo.html
http://icant.co.uk/articles/sins/sins_sectiondemo.html
http://icant.co.uk/articles/sins/sins_section_with_current.html
http://icant.co.uk/articles/sins/sins_section_with_current.html

$(document).ready(function(){
 $('.section').hide();
 $('h2').click(function(e){
 $(this).next().toggle().css({
 'background':'#ffc',
 'border':'1px solid #999',
 'padding':'5px'
 });
 })
});

What if you then want to allow only one of them to be open at any time?
Inexperienced developers would do something like this:
$(document).ready(function(){
 $('.section').hide();
 $('h2').click(function(e){
 $('.section').hide();
 $(this).next().toggle().css({
 'background':'#ffc',
 'border':'1px solid #999',
 'padding':'5px'
 });
 })
});

This does the job, but you’re looping around the document and accessing
the DOM a lot, which is slow. You can alleviate this by keeping the current
open section in a variable:
$(document).ready(function(){
 var current = false;
 $('.section').hide();
 $('h2').click(function(e){
 if(current){
 current.hide();
 }
 current = $(this).next();
 current.toggle().css({
 'background':'#ffc',
 'border':'1px solid #999',

Smashing eBook #13│JavaScript Essentials│ 86

http://icant.co.uk/articles/sins/sins_section_single_open.html
http://icant.co.uk/articles/sins/sins_section_single_open.html

 'padding':'5px'
 });
 })
});

Predefine the current section as false, and set it when you click the first
heading. You would then hide current only if it is true, thereby removing
the need for another loop through all elements that have the class
section.

But here is the interesting thing: if all you want is to show and hide sections,
you don’t need any looping at all! CSS already goes through the document
when it renders and applies classes. You just need to give the CSS engine
something to hang on to, such as a class for the body:

$(document).ready(function(){
 $('body').addClass('js');
 var current = null;
 $('h2').click(function(e){
 if(current){
 current.removeClass('current');
 }
 current = $(this).next().addClass('current');
 })
});

By adding the class js to the body of the document and toggling the class
current for the current section, you maintain control of the look and feel in
CSS:

Smashing eBook #13│JavaScript Essentials│ 87

http://icant.co.uk/articles/sins/sins_section_class_handle.html
http://icant.co.uk/articles/sins/sins_section_class_handle.html
http://icant.co.uk/articles/sins/sins_section_class_handle.html
http://icant.co.uk/articles/sins/sins_section_class_handle.html

<style type="text/css" media="screen">
 .section{
 border:1px solid #999;
 background:#ccc;
 }
 .js .section{
 display:none;
 }
 .js .current{
 display:block;
 border:1px solid #999;
 background:#ffc;
 }
</style>

The beauty of this is that the handle will be re-usable by the CSS designer
and maintainer. Anything without the .js selector would be the non-
scripting-enabled version of a part of the document, and anything with
the .js selector is applied only when JavaScript is available. And yes, you
should think about the case when it is not.

Sin #4: Depending On JavaScript And Certain Input
Devices
There is quite a discussion about the need to consider non-JavaScript
environments in this day and age, but here is a fact: JavaScript can be
turned off, and any JavaScript could break the page for the other scripts that
are included. Given the flakiness of code out there that may be running
alongside yours and the instability of wireless and mobile connections, I for
one want to build one thing: code that works.

So, making sure that the most basic usage of your product does not depend
on JavaScript is not just nice to have but essential if you expect people to
actually use the product.

Smashing eBook #13│JavaScript Essentials│ 88

Absolutely nothing is wrong with using JavaScript heavily. On the contrary, it
makes the Web much smoother and saves us a lot of time if done right. But
you should never promise functionality that doesn’t work. And if you rely on
JavaScript, this is exactly what you’re doing. I’ve already covered the effects
of bad JavaScript in detail in the AJAX, JavaScript testing and security
articles here on Smashing Magazine, but once again here are some simple
steps you can take to make sure you don’t break your promise to end users:

• Anything vital to the functionality of your product should not require
JavaScript. Forms, links and server-side validation and re-direct scripts
are your friends.

• If something depends on JavaScript, build it with JavaScript and add it
to the document using the DOM or the equivalent method in your library
of choice.

• If you add JavaScript functionality, make sure it works with the
keyboard and mouse. Click and submit handlers are bullet-proof,
whereas key and mouse events are flaky and don’t work on mobile
devices.

• By writing clever back-end code that recognizes when data is required
by JavaScript rather than building APIs that render HTML, you avoid
having to do double-maintenance, which is an argument that many of
the “Everyone enables JavaScript” zealots bring up a lot. For proof of
this, check out the presentation on building Web applications using YQL
and YUI that I gave a few weeks ago (video in English and German).

WHEN JAVASCRIPT DEPENDENCE IS OKAY (TO A DEGREE)

A lot of misunderstanding about JavaScript dependence stems from people
making blanket statements based on the environments they work in.

If you are a Google engineer working on Gmail, you would be hard pressed
to think of why you would even bother working without JavaScript. The

Smashing eBook #13│JavaScript Essentials│ 89

http://www.smashingmagazine.com/2010/02/10/some-things-you-should-know-about-ajax/
http://www.smashingmagazine.com/2010/02/10/some-things-you-should-know-about-ajax/
http://www.smashingmagazine.com/2010/01/21/find-the-right-javascript-solution-with-a-7-step-test/
http://www.smashingmagazine.com/2010/01/21/find-the-right-javascript-solution-with-a-7-step-test/
http://www.smashingmagazine.com/2010/01/14/web-security-primer-are-you-part-of-the-problem/
http://www.smashingmagazine.com/2010/01/14/web-security-primer-are-you-part-of-the-problem/
http://www.yuiblog.com/blog/2010/02/11/video-heilmann-yql/
http://www.yuiblog.com/blog/2010/02/11/video-heilmann-yql/
http://www.yuiblog.com/blog/2010/02/11/video-heilmann-yql/
http://www.yuiblog.com/blog/2010/02/11/video-heilmann-yql/

same goes for widget developers who work on OpenSocial widgets, mobile
applications, Apple widgets and Adobe Air. In other words, if your
environment already depends on JavaScript, then by all means don’t bother
with a fall-back.

But do not take these closed environments and edge-case applications as
the standard by which we should be measuring JavaScript. JavaScript’s
greatest power and greatest problem is its versatility. Saying that all
websites can stand JavaScript because Gmail needs it is like saying that all
cars should have a start button because they work great in Hybrids, or that
hybrid cars should have massive tanks and cow catchers because they work
great on Hummers. The technical feature set of a product depends on its
implementation and target market. Different applications have different base
functionality that needs to be satisfied in order to reach the largest audience
and not block people out.

CONSIDER THE USE CASES AND MAINTENANCE

One fascinating aspect of JavaScript-dependent code is that, in many cases,
people have simply not considered all the use cases (here’s a great
example). Take the following HTML:

<form action="#" id="f">
 <div>
 <label for="search">Search</label>
 <input type="text" value="kittens" id="search">
 <input type="submit" id="s" value="go">
 </div>
</form>
<div id="results"></div>

Without JavaScript, this does nothing whatsoever. There is no sensible
action attribute, and the text field has no name attribute. So, even when
you send the form off, the server won’t get the information that the user has
entered.

Smashing eBook #13│JavaScript Essentials│ 90

http://icant.co.uk/articles/sins/sins_jsform.html
http://icant.co.uk/articles/sins/sins_jsform.html
http://icant.co.uk/articles/sins/sins_jsform.html
http://icant.co.uk/articles/sins/sins_jsform.html

Using jQuery and a JSON data source such as YQL, you can do a pure
JavaScript search with this:

$('#s').click(function(event){
 event.preventDefault();
 $('').appendTo('#results');
 var url =
 $.getJSON('http://query.yahooapis.com/v1/public/yql?'+
 'q=select%20abstract%2Cclickurl%2Cdispurl%2Ctitle
%20'+
 'from%20search.web%20where%20query%3D%22'+
 $('#search').val() + '%22&format=json&'+
 'callback=?',
 function(data){
 $.each(data.query.results.result,
 function(i,item){
 $('<h3>'+
 item.title+' ('+item.dispurl+')</h3><p>'+
 (item.abstract || '') +'</p>').
 appendTo("#results ul");
 });
 });
});

This works… unless of course you are like me and prefer to send forms by
hitting “Enter” rather than clicking the “Submit” button. Unless I tab through
the whole form and focus on the “Submit” button, I get nothing.

Smashing eBook #13│JavaScript Essentials│ 91

http://developer.yahoo.com/yql
http://developer.yahoo.com/yql
http://query.yahooapis.com/v1/public/yql?'+
http://query.yahooapis.com/v1/public/yql?'+

So, that’s the first thing to fix. If you create forms, never use a click handler
on the button. Instead, use the submit event of the form. This catches both
the clicking “Submit” and hitting “Enter” cases. With one change, you now
support all of the keyboard users out there, and the whole change is
contained in the first line:

$('#f').submit(function(event){
 event.preventDefault();
 $('').appendTo('#results');
 var url =
 $.getJSON('http://query.yahooapis.com/v1/public/yql?'+
 'q=select%20abstract%2Cclickurl%2Cdispurl%2Ctitle
%20'+
 'from%20search.web%20where%20query%3D%22'+
 $('#search').val() + '%22&format=json&'+
 'callback=?',
 function(data){
 $.each(data.query.results.result,
 function(i,item){
 $('<h3>'+
 item.title+' ('+item.dispurl+')</h3><p>'+
 (item.abstract || '') +'</p>').
 appendTo("#results ul");
 });
 });
});

We’ve now covered the first case. But without JavaScript, the form still
doesn’t do anything. And another problem brings us to the next sin of
writing JavaScript.

Sin #5: Making Maintenance Unnecessarily Hard
One thing that keeps great code off the Web is that our work environment,
deadlines and hiring practices condition developers to build code for quick
release, without considering how difficult maintaining that code will be later

Smashing eBook #13│JavaScript Essentials│ 92

http://query.yahooapis.com/v1/public/yql?'+
http://query.yahooapis.com/v1/public/yql?'+

on. I once called JavaScript the village bicycle of Web design (slides here):
anyone can go for a ride. Because the code is available in the open, future
maintainers will be able to mess around with it and extend it any way they
like.

The sad thing is that the harder your code is to maintain, the more errors will
be added to it, leading it to look more like alphabet soup than organized
script.

Take the above example. Those of you who haven’t worked with YQL and
JSON-P for cross-domain AJAX undoubtedly had a “What?” moment looking
at the code. Furthermore, keeping a lot of HTML in JavaScript easy to follow
is hard, and guess what is the first thing to change when a new design for
the page comes along? Exactly: the HTML and CSS. So, to make it easier to
maintain, I for one would shift all of the work to the back end, thus making
the form work without JavaScript and keeping maintenance of all the HTML
in the same document:

<?php
if(isset($_GET['search'])){
 $search = filter_input(INPUT_GET, 'search',
FILTER_SANITIZE_ENCODED);
 $data = getdata($search);
 if($data->query->results){

 $out = '';

 foreach($data->query->results->result as $r){

 $out .= "
 <h3>
 clickurl}\">{$r->title}
 ({$r->dispurl})

 </h3>
 <p>{$r->abstract}</p>
 ";

Smashing eBook #13│JavaScript Essentials│ 93

http://developer.yahoo.net/blogs/theater/archives/2008/10/fronteers_2008_christian_heilmann_on_maintain_1.html
http://developer.yahoo.net/blogs/theater/archives/2008/10/fronteers_2008_christian_heilmann_on_maintain_1.html
http://www.slideshare.net/cheilmann/fronteers-maintainability-presentation
http://www.slideshare.net/cheilmann/fronteers-maintainability-presentation
http://developer.yahoo.com/yql
http://developer.yahoo.com/yql
http://icant.co.uk/articles/sins/independent.php
http://icant.co.uk/articles/sins/independent.php
http://icant.co.uk/articles/sins/independent.php
http://icant.co.uk/articles/sins/independent.php

 }

 $out .= '';

 } else {

 $out = '<h3>Error: could not find any results</h3>';

 }
}

if($_SERVER['HTTP_X_REQUESTED_WITH']!=''){
 echo $out;
 die();
}
?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>Ajax Search with PHP API</title>
 <link rel="stylesheet" href="styles.css" type="text/css">
</head>
<body>
 <form action="independent.php" id="f">
 <div>
 <label for="search">Search</label>
 <input type="text" value="kittens" name="search"
id="search">
 <input type="submit" id="s" value="Go">
 </div>
 </form>
 <div id="results"><?php if($out!=''){echo $out;}?></div>
 <script src="jquery.js"></script>
 <script src="ajaxform.js"></script>
</body>
</html>

Smashing eBook #13│JavaScript Essentials│ 94

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd

<?php
function getdata($search){
 $url = 'http://query.yahooapis.com/v1/public/yql?'.
 'q=select%20abstract%2Cclickurl%2Cdispurl%2Ctitle
%20'.
 'from%20search.web%20where%20query%3D%22'.
$search.'%22'.
 '&format=json';
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 $output = curl_exec($ch);
 curl_close($ch);
 $data = json_decode($output);
 return $data;
}
?>

Someone who doesn’t understand PHP at all should still be able to change
the HTML display without breaking the code. With this in place, the
JavaScript boils down to a very simple script:
$('#f').submit(function(event){
 event.preventDefault();
 $.get('independent.php?search=' + $('#search').val(),
 function(data) {
 $('#results').html(data);
 }
);
});

The normal way to make code more maintainable is to move everything that
is likely to change away from the main functional part of the script into a
configuration object at the very top of the script. You can return this as an
object to the outside world to allow people to set it before they initialize the
main functionality.

So, one change we can make to our earlier example—albeit a small one
now, but that can change quickly when more requirements come in—is to

Smashing eBook #13│JavaScript Essentials│ 95

http://query.yahooapis.com/v1/public/yql?'
http://query.yahooapis.com/v1/public/yql?'

have a configuration section right up front that defines the CSS classes in
use:

$(document).ready(function(){
 /* Configuration object - change classes, IDs and string
here */
 var config = {
 /* CSS classes that get applied dynamically */
 javascriptenabled:'js',
 currentsection:'current'
 }

 /* functionality starts here */
 $('body').addClass(config.javascriptenabled);
 var current = null;
 $('h2').click(function(e){
 if(current){
 current.removeClass(config.currentsection);
 }
 current = $(this).next().addClass(config.currentsection);
 })
});

For more information on configuration objects and why they rock for
maintenance, check out the blog post “Providing Script Configuration Inline
and Programatically“.

In summary, go over your code once more when you think you’ve finished
with it and the next person is about to take it over.

Sin #6: Not Documenting Your Code
“Good code documents itself” is a terribly common and misguided belief. In
my years as a developer, I’ve found that my style of coding has changed
constantly. What was common knowledge and best practice in 2004 might
be forgotten or even considered poor style these days.

Smashing eBook #13│JavaScript Essentials│ 96

http://www.wait-till-i.com/2008/05/23/script-configuration/
http://www.wait-till-i.com/2008/05/23/script-configuration/
http://www.wait-till-i.com/2008/05/23/script-configuration/
http://www.wait-till-i.com/2008/05/23/script-configuration/

Documenting all of the tricks and workarounds we do to make our code
work in different browsers is definitely a good idea. This allows future
maintainers to remove them when the targeted browser version becomes
obsolete or a library function fixes the issue.

Commenting your code also allows the maintainer to trace it back to you
should they need some piece of information, and it allows people who have
stumbled across your script to include it in a larger solution or library (which
has happened to me). Because JavaScripts tend replicate on the Web (in all
of those blogs and “script collections”), it is also a way to make your name
known.

Don’t go overboard with commenting, though. Obvious things don’t need to
be spelled out. I have found the following situations worthy of comment:

• Necessary hacks
Browser hacks; content clean-up; things that should be supported
server-side but are not yet.

• Sections that are likely to change
Timely solutions; IDs, classes and strings (as explained earlier).

• Start of classes and reusable functions
With name, author, version, date and license.

• Third-party code
Give credit where credit is due.

• Sections with dependencies
Some comment like, “Needs the Google API with an own key—this one
will not work on your server.”

In short, comment on anything that deviates from the normal flow of coding.
I tend to use /* */ instead of // because it won’t create a bug if people
remove the line break by accident.

Smashing eBook #13│JavaScript Essentials│ 97

SPECIAL CASE: COMMENTING OUT CODE

One special case is commenting out sections that will be necessary in future
releases or that depend on functionality not currently available. This can be
amazingly useful but also a security risk, depending on what you’re
commenting out. For example, don’t leave in any code that points to server-
side APIs that are not available yet but could at any time be half-
implemented. I’ve seen this before, where administrator links with the full
unprotected path were commented out in the HTML.

Still, commenting out can be very useful for debugging. One neat trick is the
following:

/*

myFunction('do something');

// */

This is now commented out. But by adding a single slash in front of the first
comment line, you will uncomment the whole block and make it live.
//*

myFunction('do something');

// */

This trick makes it awfully easy to toggle whole blocks.

Sin #7: Optimizing For Machines, Not People
The last sin is over-optimizing JavaScript based on the scads of information
about performance that are available to us. You will find a lot of information
on the Web about optimizing JavaScript for performance in the current
browser environment. Notice that “current browser environment”—much

Smashing eBook #13│JavaScript Essentials│ 98

information is browser- and version-specific and a necessary evil for now,
but not necessarily in future. If your application is large or your website is
high traffic, knowing and applying this information could make or break it.
Again, though, a lot of this applies to edge cases that would have little
impact on small projects and environments. This optimization does make it
harder to maintain the code; some of the things we need to do to make
browsers run fast on high-scale websites, such as writing out script nodes
with document.write(), are downright nasty.

When faced with the choice between making code cleaner and easier to
amend, extend and understand on the one hand, and shaving two
milliseconds off every page load on the other, I opt for the former. A lot of
JavaScript optimization can be done through scripts. And rather than teach
all developers on a project the ins and outs of JavaScript performance, an
expert team (or even a tool) could optimize the code before it goes live.

If you can do anything with machines to make the jobs of other machines
easier, do it. The time has come for us to apply build processes as much to
front-end code as we do to back-end code, instead of forcing ourselves to
follow coding practices that go against the natural flow of writing code.

Smashing eBook #13│JavaScript Essentials│ 99

A Quick Look Into !e Math Of
Animations With JavaScript

Christian Heilmann

In school, I hated math. It was a dire, dry and boring thing with stuffy old
books and very theoretical problems. Even worse, a lot of the tasks were
repetitive, with a simple logical change in every iteration (dividing numbers
by hand, differentials, etc.). It was exactly the reason why we invented
computers. Suffice it to say, a lot of my math homework was actually done
by my trusty Commodore 64 and some lines of Basic, with me just copying
the results later on.

These tools and the few geometry lessons I had gave me the time and
inspiration to make math interesting for myself. I did this first and foremost
by creating visual effects that followed mathematical rules in demos, intros
and other seemingly pointless things.

There is a lot of math in the visual things we do, even if we don’t realize it. If
you want to make something look natural and move naturally, you need to
add a bit of physics and rounding to it. Nature doesn’t work in right angles
or linear acceleration. This is why zombies in movies are so creepy. This was
covered here before in relation to CSS animation, but today let’s go a bit
deeper and look at the simple math behind the smooth looks.

Going From 0 To 1 Without Being Boring
If you’ve just started programming and are asked to go from 0 to 1 with a
few steps in between, you would probably go for a for loop:

Smashing eBook #13│JavaScript Essentials│ 100

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/

for (i = 0; i <= 1; i += 0.1) {
 x = i;
 y = i;
…
}

This would result in a line on a graph that is 45 degrees. Nothing in nature
moves with this precision:

A simple way to make this movement a bit more natural would be to simply
multiply the value by itself:

for (i = 0; i <= 1; i += 0.1) {
 x = i;
 y = i * i;
}

This means that 0.1 is 0.01, 0.2 is 0.04, 0.3 is 0.09, 0.4 is 0.16, 0.5 is
0.25 and so on. The result is a curve that starts flat and then gets steeper
towards the end:

Smashing eBook #13│JavaScript Essentials│ 101

You can make this even more pronounced by continuing to multiply or by
using the “to the power of” Math.pow() function:

for (i = 0; i <= 1; i += 0.1) {
 x = i;
 y = Math.pow(i, 4);
}

Smashing eBook #13│JavaScript Essentials│ 102

This is one of the tricks of the easing functions used in libraries such as
jQuery and YUI, as well as in CSS transitions and animations in modern
browsers.

You can use this the same way, but there is an even simpler option for
getting a value between 0 and 1 that follows a natural motion.

Not A Sin, Just A Natural Motion
Sine waves are probably the best thing ever for smooth animation. They
happen in nature: witness a spring with a weight on it, ocean waves, sound
and light.
In our case, we want to move from 0 to 1 smoothly.

To create a movement that goes from 0 to 1 and back to 0 smoothly, we can
use a sine wave that goes from 0 to π in a few steps. The full sine wave

Smashing eBook #13│JavaScript Essentials│ 103

http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Sine_wave

going from 0 to π × 2 (i.e. a whole circle) would result in values from -1 to 1,
and we don’t want that (yet).

var counter = 0;

// 100 iterations
var increase = Math.PI / 100;

for (i = 0; i <= 1; i += 0.01) {
 x = i;
 y = Math.sin(counter);
 counter += increase;
}

A quick aside on numbers for sine and cosine: Both Math.sin() and
Math.cos() take as the parameter an angle that should be in radians. As
humans, however, degrees ranging from 0 to 360 are much easier to read.
That’s why you can and should convert between them with this simple
formula:

Smashing eBook #13│JavaScript Essentials│ 104

http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Radian

var toRadian = Math.PI / 180;
var toDegree = 180 / Math.PI;

var angle = 30;

var angleInRadians = angle * toRadian;
var angleInDegrees = angleInRadians * toDegree;

Back to our sine waves. You can play with this a lot. For example, you could
use the absolute value of a full 2 × π loop:
var counter = 0;
// 100 iterations
var increase = Math.PI * 2 / 100;

for (i = 0; i <= 1; i += 0.01) {
 x = i;
 y = Math.abs(Math.sin(counter));
 counter += increase;
}

Smashing eBook #13│JavaScript Essentials│ 105

But again, this looks dirty. If you want the full up and down, without a break
in the middle, then you need to shift the values. You have to half the sine
and then add 0.5 to it:

var counter = 0;
// 100 iterations
var increase = Math.PI * 2 / 100;

for (i = 0; i <= 1; i += 0.01) {
 x = i;
 y = Math.sin(counter) / 2 + 0.5;
 counter += increase;
}

So, how can you use this? Having a function that returns -1 to 1 to whatever
you feed it can be very cool. All you need to do is multiply it by the values
that you want and add an offset to avoid negative numbers.

For example, check out this sine movement demo:

Smashing eBook #13│JavaScript Essentials│ 106

http://www.smashingmagazine.com/wp-content/uploads/2011/09/sinejump.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/sinejump.html

Looks neat, doesn’t it? A lot of the trickery is already in the CSS:

.stage {
 width:200px;
 height:200px;
 margin:2em;
 position:relative;
 background:#6cf;
 overflow:hidden;
}

.stage div {
 line-height:40px;
 width:100%;
 text-align:center;
 background:#369;
 color:#fff;
 font-weight:bold;
 position:absolute;
}

The stage element has a fixed dimension and is positioned relative. This
means that everything that is positioned absolutely inside it will be relative
to the element itself.

Smashing eBook #13│JavaScript Essentials│ 107

The div inside the stage is 40 pixels high and positioned absolutely. Now, all
we need to do is move the div with JavaScript in a sine wave:

var banner = document.querySelector('.stage div'),
 start = 0;
function sine(){
 banner.style.top = 50 * Math.sin(start) + 80 + 'px';
 start += 0.05;
}
window.setInterval(sine, 1000/30);

The start value changes constantly, and with Math.sin() we get a nice
wave movement. We multiply this by 50 to get a wider wave, and we add 80
pixels to center it in the stage element. Yes, the element is 200 pixels high
and 100 is half of that, but because the banner is 40 pixels high, we need to
subtract half of that to center it.

Right now, this is a simple up-and-down movement. Nothing stops you,
though, from making it more interesting. The multiplying factor of 50, for
example, could be a sine wave itself with a different value:

var banner = document.querySelector('.stage div'),
 start = 0,
 multiplier = 0;
function sine(){
 multiplier = 50 * Math.sin(start * 2);
 banner.style.top = multiplier * Math.sin(start) + 80 +
'px';
 start += 0.05;
}
window.setInterval(sine, 1000/30);

The result of this is a banner that seems to tentatively move up and down.
Back in the day and on the very slow Commodore 64, calculating the sine
wave live was too slow. Instead, we had tools to generate sine tables
(arrays, if you will), and we plotted those directly. One of the tools for
creating great sine waves so that you could have bouncing scroll texts was
the Wix Bouncer:

Smashing eBook #13│JavaScript Essentials│ 108

http://www.smashingmagazine.com/wp-content/uploads/2011/09/growingsinejump.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/growingsinejump.html

Circles In !e Sand, Round And Round…
Circular motion is a thing of beauty. It pleases the eye, reminds us of
spinning wheels and the earth we stand on, and in general has a “this is not
computer stuff” feel to it. The math of plotting something on a circle is not
hard.

It goes back to Pythagoras, who, as rumor has it, drew a lot of circles in the
sand until he found his famous theorem. If you want to use all the good stuff
that comes from this theorem, then try to find a triangle with a right angle. If
this triangle’s hypothenuse is 1, then you can easily calculate the horizontal
leg as the cosine of the angle and the vertical leg as the sine of the angle:

Smashing eBook #13│JavaScript Essentials│ 109

http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Pythagorean_theorem

How is this relevant to a circle? Well, it is pretty simple to find a right-angle
triangle in a circle to every point of it:

Smashing eBook #13│JavaScript Essentials│ 110

This means that if you want to plot something on a circle (or draw one), you
can do it with a loop and sine and cosine. A full circle is 360°, or 2 × π in
radians. We could have a go at it — but first, some plotting code needs to be
done.

A Quick DOM Plo"ing Routine
Normally, my weapon of choice here would be canvas, but in order to play
nice with older browsers, let’s do it in plain DOM. The following helper
function adds div elements to a stage element and allows us to position
them, change their dimensions, set their color, change their content and
rotate them without having to go through the annoying style settings on
DOM elements.

Smashing eBook #13│JavaScript Essentials│ 111

Plot = function (stage) {

 this.setDimensions = function(x, y) {
 this.elm.style.width = x + 'px';
 this.elm.style.height = y + 'px';
 this.width = x;
 this.height = y;
 }
 this.position = function(x, y) {
 var xoffset = arguments[2] ? 0 : this.width / 2;
 var yoffset = arguments[2] ? 0 : this.height / 2;
 this.elm.style.left = (x - xoffset) + 'px';
 this.elm.style.top = (y - yoffset) + 'px';
 this.x = x;
 this.y = y;
 };
 this.setbackground = function(col) {
 this.elm.style.background = col;
 }
 this.kill = function() {
 stage.removeChild(this.elm);
 }
 this.rotate = function(str) {
 this.elm.style.webkitTransform =
this.elm.style.MozTransform =
 this.elm.style.OTransform = this.elm.style.transform =
 'rotate('+str+')';
 }
 this.content = function(content) {
 this.elm.innerHTML = content;
 }
 this.round = function(round) {
 this.elm.style.borderRadius = round ? '50%/50%' : '';
 }
 this.elm = document.createElement('div');
 this.elm.style.position = 'absolute';
 stage.appendChild(this.elm);
};

Smashing eBook #13│JavaScript Essentials│ 112

The only things that might be new here are the transformation with different
browser prefixes and the positioning. People often make the mistake of
creating a div with the dimensions w and h and then set it to x and y on the
screen. This means you will always have to deal with the offset of the height
and width. By subtracting half the width and height before positioning the
div, you really set it where you want it — regardless of the dimensions.
Here’s a proof:

Now, let’s use that to plot 10 rectangles in a circle, shall we?

Smashing eBook #13│JavaScript Essentials│ 113

http://www.smashingmagazine.com/wp-content/uploads/2011/09/offsetissue1.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/offsetissue1.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/simplecircle.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/simplecircle.html

var stage = document.querySelector('.stage'),
 plots = 10;
 increase = Math.PI * 2 / plots,
 angle = 0,
 x = 0,
 y = 0;
for(var i = 0; i < plots; i++) {
 var p = new Plot(stage);
 p.setBackground('green');
 p.setDimensions(40, 40);
 x = 100 * Math.cos(angle) + 200;
 y = 100 * Math.sin(angle) + 200;
 p.position(x, y);

Smashing eBook #13│JavaScript Essentials│ 114

 angle += increase;
}

We want 10 things in a circle, so we need to find the angle that we want to
put them at. A full circle is two times Math.PI, so all we need to do is divide
this. The x and y position of our rectangles can be calculated by the angle
we want them at. The x is the cosine, and the y is the sine, as explained
earlier in the bit on Pythagoras. All we need to do, then, is center the circle
that we’re painting in the stage (200,200 is the center of the stage), and we
are done. We’ve painted a circle with a radius of 100 pixels on the canvas in
10 steps.

The problem is that this looks terrible. If we really want to plot things on a
circle, then their angles should also point to the center, right? For this, we
need to calculate the tangent of the right-angle square, as explained in this
charming “Math is fun” page. In JavaScript, we can use Math.atan2() as a
shortcut. The result looks much better:

Smashing eBook #13│JavaScript Essentials│ 115

http://www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html
http://www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2

var stage = document.querySelector('.stage'),
 plots = 10;
 increase = Math.PI * 2 / plots,
 angle = 0,
 x = 0,
 y = 0;
for(var i = 0; i < plots; i++) {
 var p = new Plot(stage);
 p.setBackground('green');
 p.setDimensions(40, 40);
 x = 100 * Math.cos(angle) + 200;
 y = 100 * Math.sin(angle) + 200;
 p.rotate(Math.atan2(y - 200, x - 200) + 'rad');

Smashing eBook #13│JavaScript Essentials│ 116

 p.position(x, y);
 angle += increase;
}

Notice that the rotate transformation in CSS helps us heaps in this case.
Otherwise, the math to rotate our rectangles would be much less fun. CSS
transformations also take radians and degrees as their value. In this case,
we use rad; if you want to rotate with degrees, simply use deg as the value.

How about animating the circle now? Well, the first thing to do is change the
script a bit, because we don’t want to have to keep creating new plots.
Other than that, all we need to do to rotate the circle is to keep increasing
the start angle:

var stage = document.querySelector('.stage'),
 plots = 10;
 increase = Math.PI * 2 / plots,
 angle = 0,
 x = 0,
 y = 0,
 plotcache = [];
for(var i = 0; i < plots; i++) {
 var p = new Plot(stage);
 p.setBackground('green');
 p.setDimensions(40, 40);
 plotcache.push(p);
}
function rotate(){
 for(var i = 0; i < plots; i++) {
 x = 100 * Math.cos(angle) + 200;
 y = 100 * Math.sin(angle) + 200;
 plotcache[i].rotate(Math.atan2(y - 200, x - 200) +
'rad');
 plotcache[i].position(x, y);
 angle += increase;
 }
 angle += 0.06;
}
setInterval(rotate, 1000/30);

Smashing eBook #13│JavaScript Essentials│ 117

http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingcircle.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingcircle.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingcircle.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingcircle.html

Want more? How about a rotating text message based on this? The tricky
thing about this is that we also need to turn the characters 90° on each
iteration:

var stage = document.querySelector('.stage'),
 message = 'Smashing Magazine '.toUpperCase(),
 plots = message.length;
 increase = Math.PI * 2 / plots,
 angle = -Math.PI,
 turnangle = 0,
 x = 0,
 y = 0,
 plotcache = [];

for(var i = 0; i < plots; i++) {
 var p = new Plot(stage);
 p.content(message.substr(i,1));
 p.setDimensions(40, 40);

Smashing eBook #13│JavaScript Essentials│ 118

http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotatingmessage.html

 plotcache.push(p);
}
function rotate(){
 for(var i = 0; i < plots; i++) {
 x = 100 * Math.cos(angle) + 200;
 y = 100 * Math.sin(angle) + 200;
 // rotation and rotating the text 90 degrees
 turnangle = Math.atan2(y - 200, x - 200) * 180 / Math.PI
+ 90 + 'deg';
 plotcache[i].rotate(turnangle);
 plotcache[i].position(x, y);
 angle += increase;
 }
 angle += 0.06;
}

setInterval(rotate, 1000/40);

Again, nothing here is fixed. You can make the radius of the circle change
constantly, as we did with the bouncing banner message earlier (below is
only an excerpt):
multiplier = 80 * Math.sin(angle);
for(var i = 0; i < plots; i++) {
 x = multiplier * Math.cos(angle) + 200;
 y = multiplier * Math.sin(angle) + 200;
 turnangle = Math.atan2(y - 200, x - 200) * 180 / Math.PI +
90 + 'deg';
 plotcache[i].rotate(turnangle);
 plotcache[i].position(x, y);
 angle += increase;
}
angle += 0.06;

And, of course, you can move the center of the circle, too:
rx = 50 * Math.cos(angle) + 200;
ry = 50 * Math.sin(angle) + 200;
for(var i = 0; i < plots; i++) {
 x = 100 * Math.cos(angle) + rx;
 y = 100 * Math.sin(angle) + ry;

Smashing eBook #13│JavaScript Essentials│ 119

http://www.smashingmagazine.com/wp-content/uploads/2011/09/growrotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/growrotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/growrotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/growrotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotaterotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/rotaterotatingmessage.html

 turnangle = Math.atan2(y - ry, x - rx) * 180 / Math.PI +
90 + 'deg';
 plotcache[i].rotate(turnangle);
 plotcache[i].position(x, y);
 angle += increase;
}
angle += 0.06;

For a final tip, how about allowing only a certain range of coordinates?
function rotate() {
 rx = 70 * Math.cos(angle) + 200;
 ry = 70 * Math.sin(angle) + 200;
 for(var i = 0; i < plots; i++) {
 x = 100 * Math.cos(angle) + rx;
 y = 100 * Math.sin(angle) + ry;
 x = contain(70, 320, x);
 y = contain(70, 320, y);
 turnangle = Math.atan2(y - ry, x - rx) * 180 / Math.PI +
90 + 'deg';
 plotcache[i].rotate(turnangle);
 plotcache[i].position(x, y);
 angle += increase;
 }
 angle += 0.06;
}
function contain(min, max, value) {
 return Math.min(max, Math.max(min, value));
}

SUMMARY

This was just a quick introduction to using exponentials and sine waves and
to plotting things on a circle. Have a go with the code, and play with the
numbers. It is amazing how many cool effects you can create with a few
changes to the radius or by multiplying the angles. To make it easier for you
to do this, below are the examples on JSFiddle to play with:

• Sine bouncing message

Smashing eBook #13│JavaScript Essentials│ 120

http://www.smashingmagazine.com/wp-content/uploads/2011/09/boxedrotatingmessage.html
http://www.smashingmagazine.com/wp-content/uploads/2011/09/boxedrotatingmessage.html
http://jsfiddle.net/codepo8/tgEx6/11/
http://jsfiddle.net/codepo8/tgEx6/11/

• Double sine bouncing message

• Offset issue with plotting

• Distributing elements on a circle

• Distributing elements on a circle with correct angles

• Rotating a circle of boxes

• Oscillating rotating message

• Rotating message in a circle movement

• Boxed rotated message scroller

Smashing eBook #13│JavaScript Essentials│ 121

http://jsfiddle.net/codepo8/tgEx6/2/
http://jsfiddle.net/codepo8/tgEx6/2/
http://jsfiddle.net/codepo8/tgEx6/4/
http://jsfiddle.net/codepo8/tgEx6/4/
http://jsfiddle.net/codepo8/tgEx6/8/
http://jsfiddle.net/codepo8/tgEx6/8/
http://jsfiddle.net/codepo8/tgEx6/9/
http://jsfiddle.net/codepo8/tgEx6/9/
http://jsfiddle.net/codepo8/tgEx6/7/
http://jsfiddle.net/codepo8/tgEx6/7/
http://jsfiddle.net/codepo8/tgEx6/10/
http://jsfiddle.net/codepo8/tgEx6/10/
http://jsfiddle.net/codepo8/tgEx6/5/
http://jsfiddle.net/codepo8/tgEx6/5/
http://jsfiddle.net/codepo8/tgEx6/
http://jsfiddle.net/codepo8/tgEx6/

Searchable Dynamic Content With AJAX
Crawling

Zack Grossbart

Google Search likes simple, easy-to-crawl websites. You like dynamic
websites that show off your work and that really pop. But search engines
can’t run your JavaScript. That cool AJAX routine that loads your content is
hurting your SEO.

Google’s robots parse HTML with ease; they can pull apart Word
documents, PDFs and even images from the far corners of your website. But
as far as they’re concerned, AJAX content is invisible.

!e Problem With AJAX
AJAX has revolutionized the Web, but it has also hidden its content. If you
have a Twitter account, try viewing the source of your profile page. There
are no tweets there — just code! Almost everything on a Twitter page is built
dynamically through JavaScript, and the crawlers can’t see any of it. That’s
why Google developed AJAX crawling.

Because Google can’t get dynamic content from HTML, you will need to
provide it another way. But there are two big problems: Google won’t run
your JavaScript, and it doesn’t trust you.

Google indexes the entire Web, but it doesn’t run JavaScript. Modern
websites are little applications that run in the browser, but running those
applications as they index is just too slow for Google and everyone else.

Smashing eBook #13│JavaScript Essentials│ 122

http://code.google.com/web/ajaxcrawling
http://code.google.com/web/ajaxcrawling

The trust problem is trickier. Every website wants to come out first in search
results; your website competes with everyone else’s for the top position.
Google can’t just give you an API to return your content because some
websites use dirty tricks like cloaking to try to rank higher. Search engines
can’t trust that you’ll do the right thing.

Google needs a way to let you serve AJAX content to browsers while
serving simple HTML to crawlers. In other words, you need the same
content in multiple formats.

Two URLs For !e Same Content
Let’s start with a simple example. I’m part of an open-source project called
Spiffy UI. It’s a Google Web Toolkit (GWT) framework for REST and rapid
development. We wanted to show off our framework, so we made
SpiffyUI.org using GWT.

GWT is a dynamic framework that puts all of our content in JavaScript. Our
index.html file looks like this:

<body>
 <script type="text/javascript" language="javascript"
 src="org.spiffyui.spsample.index.nocache.js"></script>
</body>

Everything is added to the page with JavaScript, and we control our content
with hash tags (I’ll explain why a little later). Every time you move to another
page in our application, you get a new hash tag. Click on the “CSS” link and
you’ll end up here:

http://www.spiffyui.org#css

The URL in the address bar will look like this in most browsers:

http://www.spiffyui.org/?css

Smashing eBook #13│JavaScript Essentials│ 123

http://en.wikipedia.org/wiki/Cloaking
http://en.wikipedia.org/wiki/Cloaking
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://www.spiffyui.org/
http://www.spiffyui.org/
http://en.wikipedia.org/wiki/Hashtag#Hashtags
http://en.wikipedia.org/wiki/Hashtag#Hashtags

We’ve fixed it up with HTML5. I’ll show you how later in this article.

This simple hash works well for our application and makes it bookmarkable,
but it isn’t crawlable. Google doesn’t know what a hash tag means or how to
get the content from it, but it does provide an alternate method for a
website to return content. So, we let Google know that our hash is really
JavaScript code instead of just an anchor on the page by adding an
exclamation point (a “bang”), like this:

http://www.spiffyui.org#!css

This hash bang is the secret sauce in the whole AJAX crawling scheme.
When Google sees these two characters together, it knows that more
content is hidden by JavaScript. It gives us a chance to return the full
content by making a second request to a special URL:

http://www.spiffyui.org?_escaped_fragment_=css

The new URL has replaced the #! with ?_escaped_fragment_=. Using a
URL parameter instead of a hash tag is important, because parameters are
sent to the server, whereas hash tags are available only to the browser.

That new URL lets us return the same content in HTML format when
Google’s crawler requests it. Confused? Let’s look at how it works, step by
step.

Snippets Of HTML
The whole page is rendered in JavaScript. We needed to get that content
into HTML so that it is accessible to Google. The first step was to separate
SpiffyUI.org into snippets of HTML.

Google still thinks of a website as a set of pages, so we needed to serve our
content that way. This was pretty easy with our application, because we

Smashing eBook #13│JavaScript Essentials│ 124

have a set of pages, and each one is a separate logical section. The first
step was to make the pages bookmarkable.

BOOKMARKING

Most of the time, JavaScript just changes something within the page: when
you click that button or pop up that panel, the URL of the page does not
change. That’s fine for simple pages, but when you’re serving content
through JavaScript, you want give users unique URLs so that they can
bookmark certain areas of your application.

JavaScript applications can change the URL of the current page, so they
usually support bookmarking via the addition of hash tags. Hash tags work
better than any other URL mechanism because they’re not sent to the
server; they’re the only part of the URL that can be changed without having
to refresh the page.

The hash tag is essentially a value that makes sense in the context of your
application. Choose a tag that is logical for the area of your application that
it represents, and add it to the hash like this:

http://www.spiffyui.org#css

When a user accesses this URL again, we use JavaScript to read the hash
tag and send the user to the page that contains the CSS.

You can choose anything you want for your hash tag, but try to keep it
readable, because users will be looking at it. We give our hashes tags like
css, rest and security.

Because you can name the hash tag anything you want, adding the extra
bang for Google is easy. Just slide it between the hash and the tag, like this:

http://www.spiffyui.org#!css

Smashing eBook #13│JavaScript Essentials│ 125

You can manage all of your hash tags manually, but most JavaScript history
frameworks will do it for you. All of the plug-ins that support HTML4 use
hash tags, and many of them have options for making URLs bookmarkable.
We use History.js by Ben Lupton. It’s easy to use, it’s open source, and it has
excellent support for HTML5 history integration. We’ll talk more about that
shortly.

SERVING UP SNIPPETS

The hash tag makes an application bookmarkable, and the bang makes it
crawlable. Now Google can ask for special escaped-fragment URLs like so:

When the crawler accesses our ugly URL, we need to return simple HTML.
We can’t handle that in JavaScript because the crawler doesn’t run
JavaScript in the crawler. So, it all has to come from the server.

Smashing eBook #13│JavaScript Essentials│ 126

https://github.com/balupton/history.js
https://github.com/balupton/history.js
http://balupton.com/
http://balupton.com/

You can implement your server in PHP, Ruby or any other language, as long
as it delivers HTML. SpiffyUI.org is a Java application, so we deliver our
content with a Java servlet.

The escaped fragment tells us what to serve, and the servlet gives us a
place to serve it from. Now we need the actual content.

Getting the content to serve is tricky. Most applications mix the content in
with the code; but we don’t want to parse the readable text out of the
JavaScript. Luckily, Spiffy UI has an HTML-templating mechanism. The
templates are embedded in the JavaScript but also included on the server.
When the escaped fragment looks for the ID css, we just have to serve
CSSPanel.html.

The template without any styling looks very plain, but Google just needs the
content. Users see our page with all of the styles and dynamic features:

Smashing eBook #13│JavaScript Essentials│ 127

http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Java_Servlet

Google gets only the unstyled version:

Smashing eBook #13│JavaScript Essentials│ 128

You can see all of the source code for our SiteMapServlet.java servlet.
This servlet is mostly just a look-up table that takes an ID and serves the
associated content from somewhere on our server. It’s called
SiteMapServlet.java because this class also handles the generation of
our site map.

Smashing eBook #13│JavaScript Essentials│ 129

http://spiffyui.googlecode.com/svn/trunk/spiffyui-app/src/main/java/org/spiffyui/spsample/server/SiteMapServlet.java
http://spiffyui.googlecode.com/svn/trunk/spiffyui-app/src/main/java/org/spiffyui/spsample/server/SiteMapServlet.java

Tying It All Together With A Site Map
Our site map tells the crawler what’s available in our application. Every
website should have a site map; AJAX crawling doesn’t work without one.

Site maps are simple XML documents that list the URLs in an application.
They can also include data about the priority and update frequency of the
app’s pages. Normal entries for site maps look like this:

<url>
 <loc>http://www.spiffyui.org/</loc>
 <lastmod>2011-07-26</lastmod>
 <changefreq>daily</changefreq>
 <priority>1.0</priority>
</url>

Our AJAX-crawlable entries look like this:
<url>
 <loc>http://www.spiffyui.org/#!css</loc>
 <lastmod>2011-07-26</lastmod>
 <changefreq>daily</changefreq>
 <priority>0.8</priority>
</url>

The hash bang tells Google that this is an escaped fragment, and the rest
works like any other page. You can mix and match AJAX URLs and regular
URLs, and you can use only one site map for everything.

You could write your site map by hand, but there are tools that will save you
a lot of time. The key is to format the site map well and submit it to Google
Webmaster Tools.

Smashing eBook #13│JavaScript Essentials│ 130

http://www.spiffyui.org/sitemap.xml
http://www.spiffyui.org/sitemap.xml
http://www.spiffyui.org
http://www.spiffyui.org
http://www.spiffyui.org/#!css
http://www.spiffyui.org/#!css

Google Webmaster Tools
Google Webmaster Tools gives you the chance to tell Google about your
website. Log in with your Google ID, or create a new account, and then
verify your website.

Smashing eBook #13│JavaScript Essentials│ 131

https://www.google.com/webmasters/tools
https://www.google.com/webmasters/tools

Once you’ve verified, you can submit your site map and then Google will
start indexing your URLs.

And then you wait. This part is maddening. It took about two weeks for
SpiffyUI.org to show up properly in Google Search. I posted to the help
forums half a dozen times, thinking it was broken.

There’s no easy way to make sure everything is working, but there are a few
tools to help you see what’s going on. The best one is Fetch as Googlebot,
which shows you exactly what Google sees when it crawls your website.
You can access it in your dashboard in Google Webmaster Tools under
“Diagnostics.”

Smashing eBook #13│JavaScript Essentials│ 132

http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=158587
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=158587

Enter a hash bang URL from your website, and click “Fetch.” Google will tell
you whether the fetch has succeeded and, if it has, will show you the
content it sees.

Smashing eBook #13│JavaScript Essentials│ 133

If Fetch as Googlebot works as expected, then you’re returning the escaped
URLs correctly. But you should check a few more things:

• Validate your site map.

• Manually try the URLs in your site map. Make sure to try the hash-bang
and escaped versions.

Smashing eBook #13│JavaScript Essentials│ 134

http://www.validome.org/google/validate
http://www.validome.org/google/validate

• Check the Google result for your website by searching for
site:www.yoursite.com.

Making Pre"y URLs With HTML5
Twitter leaves the hash bang visible in its URLs, like this:

http://twitter.com/#!/ZackGrossbart

This works well for AJAX crawling, but again, it’s slightly ugly. You can make
your URLs prettier by integrating HTML5 history.

Spiffy UI uses HTML5 history integration to turn a hash-bang URL like this…

http://www.spiffyui.org#!css

… into a pretty URL like this:

http://www.spiffyui.org?css

HTML5 history makes it possible to change this URL parameter, because
the hash tag is the only part of the URL that you can change in HTML4. If
you change anything else, the entire page reloads. HTML5 history changes
the entire URL without refreshing the page, and we can make the URL look
any way we want.

This nicer URL works in our application, but we still list the hash-bang
version on our site map. And when browsers access the hash-bang URL, we
change it to the nicer one with a little JavaScript.

Cloaking
Earlier, I mentioned cloaking. It is the practice of trying to boost a website’s
ranking in search results by showing one set of pages to Google and

Smashing eBook #13│JavaScript Essentials│ 135

http://www.yoursite.com
http://www.yoursite.com
http://www.w3.org/TR/html5/history.html
http://www.w3.org/TR/html5/history.html

another to regular browsers. Google doesn’t like cloaking and may remove
offending websites from its search index.

AJAX-crawling applications always show different results to Google than to
regular browsers, but it isn’t cloaking if the HTML snippets contain the same
content that the user would see in the browser. The real mystery is how
Google can tell whether a website is cloaking or not; crawlers can’t compare
content programmatically because they don’t run JavaScript. It’s all part of
Google’s Googley power.

Regardless of how it’s detected, cloaking is a bad idea. You might not get
caught, but if you do, you’ll be removed from the search index.

Hash Bang Is A Li"le Ugly, But It Works
I’m an engineer, and my first response to this scheme is “Yuck!” It just feels
wrong; we’re warping the purpose of URLs and relying on magic strings. But
I understand where Google is coming from; the problem is extremely
difficult. Search engines need to get useful information from inherently
untrustworthy sources: us.

Hash bangs shouldn’t replace every URL on the Web. Some websites have
had serious problems with hash-bang URLs because they rely on JavaScript
to serve content. Simple pages don’t need hash bangs, but AJAX pages do.
The URLs do look a bit ugly, but you can fix that with HTML5.

FURTHER READING

We’ve covered a lot in this article. Supporting AJAX crawling means that you
need to change your client’s code and your server’s code. Here are some
links to find out more:

• “Making AJAX Applications Crawlable,” Google Code

Smashing eBook #13│JavaScript Essentials│ 136

http://www.google.com/support/webmasters/bin/answer.py?answer=66355
http://www.google.com/support/webmasters/bin/answer.py?answer=66355
http://www.google.com/support/webmasters/bin/answer.py?answer=66355
http://www.google.com/support/webmasters/bin/answer.py?answer=66355
http://www.webmonkey.com/2011/02/gawker-learns-the-hard-way-why-hash-bang-urls-are-evil/
http://www.webmonkey.com/2011/02/gawker-learns-the-hard-way-why-hash-bang-urls-are-evil/
http://code.google.com/web/ajaxcrawling/
http://code.google.com/web/ajaxcrawling/

• “Session History and Navigation,” HTML5 specification, section 5.4

• sitemaps.org

• Google Webmaster Tools

• Spiffy UI source code, with a complete example of AJAX crawling.

• Thanks to Kristen Riley for help with some of the images in this article.

Smashing eBook #13│JavaScript Essentials│ 137

http://www.w3.org/TR/html5/history.html
http://www.w3.org/TR/html5/history.html
http://www.sitemaps.org/
http://www.sitemaps.org/
https://www.google.com/webmasters/tools
https://www.google.com/webmasters/tools
https://code.google.com/p/spiffyui/source/checkout
https://code.google.com/p/spiffyui/source/checkout

Authors

Addy Osmani
Addy Osmani is a JavaScript blogger & UI Developer for AOL based in
London, England. He is also a member of the jQuery [Bug Triage/Docs/
Front-end] teams where he assists with bugs, documentation and
community updates. Most recently he's been nominated for the .net 'Brilliant
Newcomer' award.

Andy Croxall
Andy Croxall is a Web developer from Wandsworth, London, England. He is
a Javascript specialist and is an active member of the jQuery community,
posting plugins and extensions. He has worked for clients ranging from the
London Stock Exchange to Durex. You can keep up with him and his
projects and creations on his

Christian Heilmann
An international Developer Evangelist working for Mozilla in the lovely town
of London, England.

Zack Grossbart
Zack Grossbart is an engineer, designer, and author. He's a founding
member of the Spiffy UI project, the architect of the WordPress Editorial
Calendar, and a Consulting Engineer with NetIQ. Zack began loading DOS
from a floppy disk when he was five years old. He first worked professionally

Smashing eBook #13│JavaScript Essentials│ 138

http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.zackgrossbart.com/hackito/
http://www.zackgrossbart.com/hackito/
http://www.zackgrossbart.com/blog/toc/
http://www.zackgrossbart.com/blog/toc/
http://www.spiffyui.org/
http://www.spiffyui.org/
http://stresslimitdesign.com/editorial-calendar-plugin
http://stresslimitdesign.com/editorial-calendar-plugin
http://stresslimitdesign.com/editorial-calendar-plugin
http://stresslimitdesign.com/editorial-calendar-plugin
http://www.netiq.com/
http://www.netiq.com/

with computers when he was 15 and started his first software company
when he was 16. Zack lives in Cambridge, Massachusetts with his wife and
daughter.

Smashing eBook #13│JavaScript Essentials│ 139

