

Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version: October 2012 (Published in November, 2011)

ISBN: 9783943075168

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Andrew Rogerson & Talita Telma Stöckle

Technical Editing: Andrew Rogerson

Proofreading: Andrew Lobo, Iris Ljesnjanin

Idea & Concept: Smashing Media GmbH

Smashing eBook #14│Mastering jQuery │ 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and
developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing
companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #14│Mastering jQuery │ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook
The explosion of JavaScript libraries and frameworks within the front-end
development scene has opened up the power of jQuery to a far wider
audience than ever before. What began from a necessity of front-end
developers to upgrade JavaScript basic API took a new direction of unified
implementation between browsers and to make it more compact in its
syntax. Thanks to this development, it is possible to actually apply optimized
scripts now. A script to find all links of a certain CSS class in a document and
bind an event to them requires one single line of code instead of ten. Also,
jQuery brings to the party its own API, featuring a host of functions, methods
and syntactical peculiarities.

In this Smashing eBook #14: Mastering jQuery, you will learn how to
combine JavaScript and jQuery with PHP and, specially, PHP’s GD library to
create an image manipulation tool to upload an image, then crop it and
finally save the revised version to the server. In addition, you will be able to
create your own bookmarklets, which are small JavaScript-powered
applications in link form. Typically used to extend the functionality of the
browser and to interact with Web services, bookmarklets allow you to post
onto your own WordPress or Tumblr blog, submit any selected text to
Google's search function, or modify a current CSS code within a browser ―
just to cite a few!

Special attention is also given to jQuery plugins, which help save time and
streamline development as well as allow programmers to avoid having to
build every component from scratch. A good plugin saves countless
development hours, whereas a bad plugin leads to bugs that must be fixed
and so takes more of of your time than actually building the component from
scratch. With the help of this eBook, you will get the best hints on how to
choose which plugins are really worth considering for your projects and
which ones you should avoid.

Smashing eBook #14│Mastering jQuery │ 4

Table of Contents
Commonly Confused Bits Of jQuery

Image Manipulation With jQuery And PHP GD

Make Your Own Bookmarklets With jQuery

jQuery Plugin Checklist: Should You Use That jQuery Plug-In?

Essential jQuery Plugin Patterns

The Authors

Smashing eBook #14│Mastering jQuery │ 5

Commonly Confused Bits Of jQuery

Andy Croxall

The explosion of JavaScript libraries and frameworks such as jQuery onto
the front-end development scene has opened up the power of JavaScript to
a far wider audience than ever before. It was born of the need — expressed
by a crescendo of screaming by front-end developers who were fast running
out of hair to pull out — to improve JavaScript’s somewhat primitive API, to
make up for the lack of unified implementation across browsers and to
make it more compact in its syntax.

All of which means that, unless you have some odd grudge against jQuery,
those days are gone — you can actually get stuff done now. A script to find
all links of a certain CSS class in a document and bind an event to them now
requires one line of code, not 10. To power this, jQuery brings to the party
its own API, featuring a host of functions, methods and syntactical
peculiarities. Some are confused or appear similar to each other but actually
differ in some way. This article clears up some of these confusions.

1. .parent() vs. .parents() vs. .closest()
All three of these methods are concerned with navigating upwards through
the DOM, above the element(s) returned by the selector, and matching
certain parents or, beyond them, ancestors. But they differ from each other
in ways that make them each uniquely useful.

Smashing eBook #14│Mastering jQuery │ 6

PARENT(SELECTOR)

This simply matches the one immediate parent of the element(s). It can take
a selector, which can be useful for matching the parent only in certain
situations. For example:

$('span#mySpan').parent().css('background', '#f90');
$('p').parent('div.large').css('background', '#f90');

The first line gives the parent of #mySpan. The second does the same for
parents of all <p> tags, provided that the parent is a div and has the class
large.

Tip: the ability to limit the reach of methods like the one in the second line is
a common feature of jQuery. The majority of DOM manipulation methods
allow you to specify a selector in this way, so it’s not unique to parent().

PARENTS(SELECTOR)

This acts in much the same way as parent(), except that it is not restricted
to just one level above the matched element(s). That is, it can return
multiple ancestors. So, for example:

$('li.nav').parents('li'); //for each LI that has the class
nav, go find all its parents/ancestors that are also LIs

This says that for each that has the class nav, return all its parents/
ancestors that are also s. This could be useful in a multi-level
navigation tree, like the following:

<ul id='nav'>
 Link 1

 Sub link 1.1
 Sub link 1.2
 Sub link 1.3

Smashing eBook #14│Mastering jQuery │ 7

 Link 2

 Sub link 2.1

 Sub link 2.2

Imagine we wanted to color every third-generation in that tree orange.
Simple:
$('#nav li').each(function() {
 if ($(this).parents('#nav li').length == 2)
 $(this).css('color', '#f90');
});

This translates like so: for every found in #nav (hence our each() loop),
whether it’s a direct child or not, see how many parents/ancestors are
above it within #nav. If the number is two, then this must be on level
three, in which case color.

CLOSEST(SELECTOR)

This is a bit of a well-kept secret, but very useful. It works like parents(),
except that it returns only one parent/ancestor. In my experience, you’ll
normally want to check for the existence of one particular element in an
element’s ancestry, not a whole bunch of them, so I tend to use this more
than parents(). Say we wanted to know whether an element was a
descendant of another, however deep in the family tree:

Smashing eBook #14│Mastering jQuery │ 8

if ($('#element1').closest('#element2').length == 1)
 alert("yes - #element1 is a descendent of #element2!");
else
 alert("No - #element1 is not a descendent of #element2");

Tip: you can simulate closest() by using parents() and limiting it to
one returned element.

$($
('#element1').parents('#element2').get(0)).css('background',
'#f90');

One quirk about closest() is that traversal starts from the element(s)
matched by the selector, not from its parent. This means that if the selector
that passed inside closest() matches the element(s) it is running on, it
will return itself. For example:
$('div#div2').closest('div').css('background', '#f90');

This will turn #div2 itself orange, because closest() is looking for a
<div>, and the nearest <div> to #div2 is itself.

2. .position() vs. .offset()
These two are both concerned with reading the position of an element —
namely the first element returned by the selector. They both return an
object containing two properties, left and top, but they differ in what the
returned position is relative to.

position() calculates positioning relative to the offset parent — or, in
more understandable terms, the nearest parent or ancestor of this element
that has position: relative. If no such parent or ancestor is found, the
position is calculated relative to the document (i.e. the top-left corner of the
viewport).

offset(), in contrast, always calculates positioning relative to the
document, regardless of the position attribute of the element’s parents
and ancestors.

Smashing eBook #14│Mastering jQuery │ 9

Consider the following two <div>s:

Querying (no pun intended) the offset() and position() of
#innerDiv will return different results.

var position = $('#innerDiv').position();
var offset = $('#innerDiv').offset();
alert("Position: left = "+position.left+", top =
"+position.top+"\n"+
 "Offset: left = "+offset.left+" and top = "+offset.top
)

3. .css(‘width’) and .css(‘height’) vs. .width()
and .height()
These three, you won’t be shocked to learn, are concerned with calculating
the dimensions of an element in pixels. They both return the offset
dimensions, which are the genuine dimensions of the element no matter
how stretched it is by its inner content.

They differ in the data types they return: css('width') and
css('height') return dimensions as strings, with px appended to the
end, while width() and height() return dimensions as integers.

Smashing eBook #14│Mastering jQuery │ 10

There’s actually another little-known difference that concerns IE (quelle
surprise!), and it’s why you should avoid the css('width') and
css('height') route. It has to do with the fact that IE, when asked to
read “computed” (i.e. not implicitly set) dimensions, unhelpfully returns
auto. In jQuery core, width() and height() are based on
the .offsetWidth and .offsetHeight properties resident in every
element, which IE does read correctly.

But if you’re working on elements with dimensions implicitly set, you don’t
need to worry about that. So, if you wanted to read the width of one element
and set it on another element, you’d opt for css('width'), because the
value returned comes ready appended with ‘px’.

But if you wanted to read an element’s width() with a view to performing
a calculation on it, you’d be interested only in the figure; hence width() is
better.

Note that each of these can simulate the other with the help of an extra line
of JavaScript, like so:

var width = $('#someElement').width(); //returns integer
width = width+'px'; //now it's a string like css('width')
returns
var width = $('#someElement').css('width'); //returns string
width = parseInt(width); //now it's an integer like width()
returns

Lastly, width() and height() actually have another trick up their sleeves:
they can return the dimensions of the window and document. If you try this
using the css() method, you’ll get an error.

Smashing eBook #14│Mastering jQuery │ 11

4. .click() (etc) vs. .bind() vs. .live() vs. .delegate
These are all concerned with binding events to elements. The differences lie
in what elements they bind to and how much we can influence the event
handler (or “callback”). If this sounds confusing, don’t worry. I’ll explain.

CLICK() (ETC)

It’s important to understand that bind() is the daddy of jQuery’s event-
handling API. Most tutorials deal with events with simple-looking methods,
such as click() and mouseover(), but behind the scenes these are just
the lieutenants who report back to bind().

These lieutenants, or aliases, give you quick access to bind certain event
types to the elements returned by the selector. They all take one argument:
a callback function to be executed when the event fires. For example:

$('#table td ').click(function() {
 alert("The TD you clicked contains '"+$(this).text()+"'");
});

This simply says that whenever a <div> inside #table is clicked, alert its
text content.

BIND()

We can do the same thing with bind, like so:

$('#table td ').bind('click', function() {
 alert("The TD you clicked contains '"+$(this).text()+"'");
});

Note that this time, the event type is passed as the first argument to
bind(), with the callback as the second argument. Why would you use
bind() over the simpler alias functions?

Smashing eBook #14│Mastering jQuery │ 12

Very often you wouldn’t. But bind() gives you more control over what
happens in the event handler. It also allows you to bind more than one
event at a time, by space-separating them as the first argument, like so:

$('#table td').bind('click contextmenu', function() {
 alert("The TD you clicked contains '"+$(this).text()+"'");
});

Now our event fires whether we’ve clicked the <td> with the left or right
button. I also mentioned that bind() gives you more control over the event
handler. How does that work? It does it by passing three arguments rather
than two, with argument two being a data object containing properties
readable to the callback, like so:
$('#table td').bind('click contextmenu', {message: 'hello!'},
function(e) {
 alert(e.data.message);
});

As you can see, we’re passing into our callback a set of variables for it to
have access to, in our case the variable message.

You might wonder why we would do this. Why not just specify any variables
we want outside the callback and have our callback read those? The answer
has to do with scope and closures. When asked to read a variable,
JavaScript starts in the immediate scope and works outwards (this is a
fundamentally different behavior to languages such as PHP). Consider the
following:

var message = 'you left clicked a TD';
$('#table td').bind('click', function(e) {
 alert(message);
});
var message = 'you right clicked a TD';
$('#table td').bind('contextmenu', function(e) {
 alert(message);
});

Smashing eBook #14│Mastering jQuery │ 13

No matter whether we click the <td> with the left or right mouse button, we
will be told it was the right one. This is because the variable message is
read by the alert() at the time of the event firing, not at the time the
event was bound.

If we give each event its own “version” of message at the time of binding
the events, we solve this problem.

$('#table td').bind('click', {message: 'You left clicked a
TD'}, function(e) {
 alert(e.data.message);
});
$('#table td').bind('contextmenu', {message: 'You right
clicked a TD'}, function(e) {
 alert(e.data.message);
});

Events bound with bind() and with the alias methods (.mouseover(),
etc) are unbound with the unbind() method.

LIVE()

This works almost exactly the same as bind() but with one crucial
difference: events are bound both to current and future elements — that is,
any elements that do not currently exist but which may be DOM-scripted
after the document is loaded.

Side note: DOM-scripting entails creating and manipulating elements in
JavaScript. Ever notice in your Facebook profile that when you “add another
employer” a field magically appears? That’s DOM-scripting, and while I won’t
get into it here, it looks broadly like this:

var newDiv = document.createElement('div');
newDiv.appendChild(document.createTextNode('hello, world!'));
$(newDiv).css({width: 100, height: 100, background: '#f90'});
document.body.appendChild(newDiv);

Smashing eBook #14│Mastering jQuery │ 14

DELEGATE()

A shortfall of live() is that, unlike the vast majority of jQuery methods, it
cannot be used in chaining. That is, it must be used directly on a selector,
like so:

$('#myDiv a').live('mouseover', function() {
 alert('hello');
});

But not…

$('#myDiv').children('a').live('mouseover', function() {
 alert('hello');
});

… which will fail, as it will if you pass direct DOM elements, such as $
(document.body).

delegate(), which was developed as part of jQuery 1.4.2, goes some way
to solving this problem by accepting as its first argument a context within
the selector. For example:

$('#myDiv').delegate('a', 'mouseover', function() {
 alert('hello');
});

Like live(), delegate() binds events both to current and future
elements. Handlers are unbound via the undelegate() method.

REAL-LIFE EXAMPLE

For a real-life example, I want to stick with DOM-scripting, because this is an
important part of any RIA (rich Internet application) built in JavaScript.

Smashing eBook #14│Mastering jQuery │ 15

Let’s imagine a flight-booking application. The user is asked to supply the
names of all passengers travelling. Entered passengers appear as new rows
in a table, #passengersTable, with two columns: “Name” (containing a
text field for the passenger) and “Delete” (containing a button to remove the
passenger’s row).

To add a new passenger (i.e. row), the user clicks a button,
#addPassenger:

$('#addPassenger').click(function() {
 var tr = document.createElement('tr');
 var td1 = document.createElement('td');
 var input = document.createElement('input');
 input.type = 'text';
 $(td1).append(input);
 var td2 = document.createElement('td');
 var button = document.createElement('button');
 button.type = 'button';
 $(button).text('delete');
 $(td2).append(button);
 $(tr).append(td1);
 $(tr).append(td2);
 $('#passengersTable tbody').append(tr);
});

Notice that the event is applied to #addPassenger with click(), not
live('click'), because we know this button will exist from the
beginning.

What about the event code for the “Delete” buttons to delete a passenger?

$('#passengersTable td button').live('click', function() {
 if (confirm("Are you sure you want to delete this
passenger?"))
 $(this).closest('tr').remove();
});

Smashing eBook #14│Mastering jQuery │ 16

Here, we apply the event with live() because the element to which it is
being bound (i.e. the button) did not exist at runtime; it was DOM-scripted
later in the code to add a passenger.

Handlers bound with live() are unbound with the die() method.

The convenience of live() comes at a price: one of its drawbacks is that
you cannot pass an object of multiple event handlers to it. Only one handler.

5. .children() vs. .find()
Remember how the differences between parent(), parents() and
closest() really boiled down to a question of reach? So it is here.

CHILDREN()

This returns the immediate children of an element or elements returned by a
selector. As with most jQuery DOM-traversal methods, it is optionally filtered
with a selector. So, if we wanted to turn all <td>s orange in a table that
contained the word “dog”, we could use this:
$('#table tr').children('td:contains(dog)').css('background',
'#f90');

FIND()

This works very similar to children(), only it looks at both children and
more distant descendants. It is also often a safer bet than children().

Say it’s your last day on a project. You need to write some code to hide all
<tr>s that have the class hideMe. But some developers omit <tbody>
from their table mark-up, so we need to cover all bases for the future. It
would be risky to target the <tr>s like this…

$('#table tbody tr.hideMe').hide();

Smashing eBook #14│Mastering jQuery │ 17

… because that would fail if there’s no <tbody>. Instead, we use find():

$('#table').find('tr.hideMe').hide();

This says that wherever you find a <tr> in #table with .hideMe, of
whatever descendancy, hide it.

6. .not() vs. !.is() vs. :not()
As you’d expect from functions named “not” and “is,” these are opposites.
But there’s more to it than that, and these two are not really equivalents.

.NOT()

not() returns elements that do not match its selector. For
example:

$('p').not('.someclass').css('color', '#f90');

That turns all paragraphs that do not have the class someclass orange.

.IS()

If, on the other hand, you want to target paragraphs that do have the class
someclass, you could be forgiven for thinking that this would do it:

$('p').is('.someclass').css('color', '#f90');

In fact, this would cause an error, because is() does not return elements: it
returns a boolean. It’s a testing function to see whether any of the chain
elements match the selector.

So when is is useful? Well, it’s useful for querying elements about their
properties. See the real-life example below.

Smashing eBook #14│Mastering jQuery │ 18

:NOT()

:not() is the pseudo-selector equivalent of the method .not() It
performs the same job; the only difference, as with all pseudo-selectors, is
that you can use it in the middle of a selector string, and jQuery’s string
parser will pick it up and act on it. The following example is equivalent to
our .not() example above:

$('p:not(.someclass)').css('color', '#f90');

REAL-LIFE EXAMPLE

As we’ve seen, .is() is used to test, not filter, elements. Imagine we had
the following sign-up form. Required fields have the class required.

<form id='myform' method='post' action='somewhere.htm'>
 <label>Forename *
 <input type='text' class='required' />

 <label>Surname *
 <input type='text' class='required' />

 <label>Phone number
 <input type='text' />

 <label>Desired username *
 <input type='text' class='required' />

 <input type='submit' value='GO' />
</form>

When submitted, our script should check that no required fields were left
blank. If they were, the user should be notified and the submission halted.

Smashing eBook #14│Mastering jQuery │ 19

$('#myform').submit(function() {
 if ($(this).find('input').is('.required[value=]')) {
 alert('Required fields were left blank! Please
correct.');
 return false; //cancel submit event
 }
});

Here we’re not interested in returning elements to manipulate them, but
rather just in querying their existence. Our is() part of the chain merely
checks for the existence of fields within #myform that match its selector. It
returns true if it finds any, which means required fields were left blank.

7. .filter() vs. .each()
These two are concerned with iteratively visiting each element returned by
a selector and doing something to it.

.EACH()

each() loops over the elements, but it can be used in two ways. The first
and most common involves passing a callback function as its only argument,
which is also used to act on each element in succession. For example:

$('p').each(function() {
 alert($(this).text());
});

This visits every <p> in our document and alerts out its contents.

But each() is more than just a method for running on selectors: it can also
be used to handle arrays and array-like objects. If you know PHP, think
foreach(). It can do this either as a method or as a core function of
jQuery. For example…

Smashing eBook #14│Mastering jQuery │ 20

var myarray = ['one', 'two'];
$.each(myarray, function(key, val) {
 alert('The value at key '+key+' is '+val);
});

… is the same as:

var myarray = ['one', 'two'];
$(myarray).each(function(key, val) {
 alert('The value at key '+key+' is '+val);
});

That is, for each element in myarray, in our callback function its key and
value will be available to read via the key and val variables, respectively.
The first of the two examples is the better choice, since it makes little sense
to pass an array as a jQuery selector, even if it works.

One of the great things about this is that you can also iterate over objects —
but only in the first way (i.e. $.each).

jQuery is known as a DOM-manipulation and effects framework, quite
different in focus from other frameworks such as MooTools, but each() is
an example of its occasional foray into extending JavaScript’s native API.

.FILTER()

filter(), like each(), visits each element in the chain, but this time to
remove it from the chain if it doesn’t pass a certain test.

The most common application of filter() is to pass it a selector string,
just like you would specify at the start of a chain. So, the following are
equivalents:

$('p.someClass').css('color', '#f90');
$('p').filter('.someclass').css('color', '#f90');

Smashing eBook #14│Mastering jQuery │ 21

In which case, why would you use the second example? The answer is,
sometimes you want to affect element sets that you cannot (or don’t want to)
change. For example:

var elements = $('#someElement div ul li a');
//hundreds of lines later...
elements.filter('.someclass').css('color', '#f90');

elements was set long ago, so we cannot — indeed may not wish to —
change the elements that return, but we might later want to filter them.

filter() really comes into its own, though, when you pass it a filter
function to which each element in the chain in turn is passed. Whether the
function returns true or false determines whether the element stays in the
chain. For example:

$('p').filter(function() {
 return $(this).text().indexOf('hello') != -1;
}).css('color', '#f90')

Here, for each <p> found in the document, if it contains the string hello,
turn it orange. Otherwise, don’t affect it.

We saw above how is(), despite its name, was not the equivalent of
not(), as you might expect. Rather, use filter() or has() as the
positive equivalent of not().

Note also that unlike each(), filter() cannot be used on arrays and
objects.

REAL-LIFE EXAMPLE

You might be looking at the example above, where we turned <p>s starting
with hello orange, and thinking, “But we could do that more simply.” You’d
be right:

$('p:contains(hello)').css('color', '#f90')

Smashing eBook #14│Mastering jQuery │ 22

For such a simple condition (i.e. contains hello), that’s fine. But filter()
is all about letting us perform more complex or long-winded evaluations
before deciding whether an element can stay in our chain.

Imagine we had a table of CD products with four columns: artist, title, genre
and price. Using some controls at the top of the page, the user stipulates
that they do not want to see products for which the genre is “Country” or
the price is above $10. These are two filter conditions, so we need a filter
function:

$('#productsTable tbody tr').filter(function() {
 var genre = $(this).children('td:nth-child(3)').text();
 var price = $(this).children('td:last').text().replace(/[^\d
\.]+/g, '');
 return genre.toLowerCase() == 'country' || parseInt(price)
>= 10;
}).hide();

So, for each <tr> inside the table, we evaluate columns 3 and 4 (genre and
price), respectively. We know the table has four columns, so we can target
column 4 with the :last pseudo-selector. For each product looked at, we
assign the genre and price to their own variables, just to keep things tidy.

For the price, we replace any characters that might prevent us from using
the value for mathematical calculation. If the column contained the value
$14.99 and we tried to compute that by seeing whether it matched our
condition of being below $10, we would be told that it’s not a number,
because it contains the $ sign. Hence we strip away everything that is not
number or dot.

Lastly, we return true (meaning the row will be hidden) if either of our
conditions are met (i.e. the genre is country or the price is $10 or more).

filter()

Smashing eBook #14│Mastering jQuery │ 23

8. .merge() vs. .extend()
Let’s finish with a foray into more advanced JavaScript and jQuery. We’ve
looked at positioning, DOM manipulation and other common issues, but
jQuery also provides some utilities for dealing with the native parts of
JavaScript. This is not its main focus, mind you; libraries such as MooTools
exist for this purpose.

.MERGE()

merge() allows you to merge the contents of two arrays into the first array.
This entails permanent change for the first array. It does not make a new
array; values from the second array are appended to the first:

var arr1 = ['one', 'two'];
var arr2 = ['three', 'four'];
$.merge(arr1, arr2);

After this code runs, the arr1 will contain four elements, namely one,
two, three, four. arr2 is unchanged. (If you’re familiar with PHP, this
function is equivalent to array_merge().)

.EXTEND()

extend() does a similar thing, but for objects:

var obj1 = {one: 'un', two: 'deux'}
var obj2 = {three: 'trois', four: 'quatre'}
$.extend(obj1, obj2);

extend() has a little more power to it. For one thing, you can merge more
than two objects — you can pass as many as you like. For another, it can
merge recursively. That is, if properties of objects are themselves objects,
you can ensure that they are merged, too. To do this, pass true as the first
argument:

Smashing eBook #14│Mastering jQuery │ 24

var obj1 = {one: 'un', two: 'deux'}
var obj2 = {three: 'trois', four: 'quatre', some_others:
{five: 'cinq', six: 'six', seven: 'sept'}}
$.extend(true, obj1, obj2);

Covering everything about the behaviour of JavaScript objects (and how
merge interacts with them) is beyond the scope of this article, but you can
read more here.

The difference between merge() and extend() in jQuery is not the same
as it is in MooTools. One is used to amend an existing object, the other
creates a new copy.

"ere You Have It
We’ve seen some similarities, but more often than not intricate (and
occasionally major) differences. jQuery is not a language, but it deserves to
be learned as one, and by learning it you will make better decisions about
what methods to use in what situation.

It should also be said that this article does not aim to be an exhaustive guide
to all jQuery functions available for every situation. For DOM traversal, for
example, there’s also nextUntil() and parentsUntil().

While there are strict rules these days for writing semantic and SEO-
compliant mark-up, JavaScript is still very much the playground of the
developer. No one will demand that you use click() instead of bind(),
but that’s not to say one isn’t a better choice than the other. It’s all about the
situation.

Smashing eBook #14│Mastering jQuery │ 25

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.extend/

Image Manipulation With jQuery And
PHP GD

Andy Croxall

One of the numerous advantages brought about by the explosion of jQuery
and other JavaScript libraries is the ease with which you can create
interactive tools for your site. When combined with server-side technologies
such as PHP, this puts a serious amount of power at your finger tips.

In this article, I’ll be looking at how to combine JavaScript/jQuery with PHP
and, particularly, PHP’s GD library to create an image manipulation tool to
upload an image, then crop it and finally save the revised version to the
server. Sure, there are plugins out there that you can use to do this; but this
article aims to show you what’s behind the process. You can download the
source files (updated) for reference.

We’ve all seen this sort of Web application before — Facebook, Flickr, t-
shirt-printing sites. The advantages are obvious; by including a functionality
like this, you alleviate the need to edit pictures manually from your visitors,
which has obvious drawbacks. They may not have access to or have the
necessary skills to use Photoshop, and in any case why would you want to
make the experience of your visitors more difficult?

Before You Start
For this article, you would ideally have had at least some experience
working with PHP. Not necessarily GD — I’ll run you through that part, and
GD is very friendly anyway. You should also be at least intermediate level in

Smashing eBook #14│Mastering jQuery │ 26

http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip

JavaScript, though if you’re a fast learning beginner, you should be fine as
well.

A quick word about the technologies you’ll need to work through this article.
You’ll need a PHP test server running the GD library, either on your hosting
or, if working locally, through something like XAMPP. GD has come bundled
with PHP as standard for some time, but you can confirm this by running the
phpinfo() function and verifying that it’s available on your server. Client-
side-wise you’ll need a text editor, some pictures and a copy of jQuery.

Se#ing Up "e Files
And off we go, then. Set up a working folder and create four files in it:
index.php, js.js, image_manipulation.php and css.css. index.php is the
actual webpage, js.js and css.css should be obvious, while
image_manipulation.php will store the code that handles the uploaded
image and then, later, saves the manipulated version.

In index.php, first let’s add a line of PHP to start a PHP session and call in
our image_manipulation.php file:
<!--?php session_start(); require_once
'image_manipulation.php'; ?-->

After that, add in the DOCTYPE and skeleton-structure of the page (header,
body areas etc) and call in jQuery and the CSS sheet via script and link tags
respectively.

Add a directory to your folder, called imgs, which will receive the uploaded
files. If you’re working on a remote server, ensure you set the permissions
on the directory such that the script will be able to save image files in it.

First, let’s set up and apply some basic styling to the upload facility.

Smashing eBook #14│Mastering jQuery │ 27

http://www.apachefriends.org/
http://www.apachefriends.org/

"e Upload Functionality
Now to some basic HTML. Let’s add a heading and a simple form to our
page that will allow the user to upload an image and assign that image a
name:

<h1>Image uploader and manipulator</h1>
<form method="POST" action="index.php" enctype="multipart/
form-data" id="imgForm">
 <label for="img_upload">Image on your PC to upload</label>
 <input type="file" name="img_upload" id="img_upload">
 <label for="img_name">Give this image a name</label>
 <input type="text" name="img_name" id="img_name">
 <input type="submit" name="upload_form_submitted">
</form>

Please note that we specify enctype=’multipart/form-data’ which is
necessary whenever your form contains file upload fields.

As you can see, the form is pretty basic. It contains 3 fields: an upload field
for the image itself, a text field, so the user can give it a name and a submit
button. The submit button has a name so it can act as an identifier for our
PHP handler script which will know that the form was submitted.

Let’s add a smattering of CSS to our stylesheet:

/* -----------------
| UPLOAD FORM
----------------- */
#imgForm { border: solid 4px #ddd; background: #eee; padding:
10px; margin: 30px; width: 600px; overflow:hidden;}
 #imgForm label { float: left; width: 200px; font-weight:
bold; color: #666; clear:both; padding-bottom:10px; }
 #imgForm input { float: left; }
 #imgForm input[type="submit"] {clear: both; }
 #img_upload { width: 400px; }
 #img_name { width: 200px; }

Smashing eBook #14│Mastering jQuery │ 28

Now we have the basic page set up and styled. Next we need to nip into
image_manipulation.php and prepare it to receive the submitted form.
Which leads nicely on to validation…

Validating "e Form
Open up image_manipulation.php. Since we made a point above of
including it into our HTML page, we can rest assured that when it’s called
into action, it will be present in the environment.

Let’s set up a condition, so the PHP knows what task it is being asked to do.
Remember we named our submit button upload_form_submitted? PHP can
now check its existence, since the script knows that it should start handling
the form.

This is important because, as I said above, the PHP script has two jobs to
do: to handle the uploaded form and to save the manipulated image later
on. It therefore needs a technique such as this to know which role it should
be doing at any given time.

/* -----------------
| UPLOAD FORM - validate form and handle submission
----------------- */

if (isset($_POST['upload_form_submitted'])) {
 //code to validate and handle upload form submission here
}

So if the form was submitted, the condition resolves to true and whatever
code we put inside, it will execute. That code will be validation code.
Knowing that the form was submitted, there are now five possible obstacles
to successfully saving the file: 1) the upload field was left blank; 2) the file
name field was left blank; 3) both these fields were filled in, but the file being
uploaded isn’t a valid image file; 4) an image with the desired name already
exists; 5) everything is fine, but for some reason, the server fails to save the

Smashing eBook #14│Mastering jQuery │ 29

image, perhaps due to file permission issues. Let’s look at the code behind
picking up each of these scenarios, should any occur, then we’ll put it all
together to build our validation script.

Combined into a single validation script, the whole code looks as follows.

/* -----------------
| UPLOAD FORM - validate form and handle submission
----------------- */

if (isset($_POST['upload_form_submitted'])) {

 //error scenario 1
 if (!isset($_FILES['img_upload']) ||
empty($_FILES['img_upload']['name'])) {
 $error = "Error: You didn't upload a file";

 //error scenario 2
 } else if (!isset($_POST['img_name']) ||
empty($_FILES['img_upload'])) {
 $error = "Error: You didn't specify a file name";
 } else {

 $allowedMIMEs = array('image/jpeg', 'image/gif', 'image/
png');
 foreach($allowedMIMEs as $mime) {
 if ($mime == $_FILES['img_upload']['type']) {
 $mimeSplitter = explode('/', $mime);
 $fileExt = $mimeSplitter[1];
 $newPath = 'imgs/'.$_POST['img_name'].'.'.
$fileExt;
 break;
 }
 }

 //error scenario 3
 if (file_exists($newPath)) {
 $error = "Error: A file with that name already
exists";

Smashing eBook #14│Mastering jQuery │ 30

 //error scenario 4
 } else if (!isset($newPath)) {
 $error = 'Error: Invalid file format - please upload
a picture file';

 //error scenario 5
 } else if (!copy($_FILES['img_upload']['tmp_name'],
$newPath)) {
 $error = 'Error: Could not save file to server';

 //...all OK!
 } else {
 $_SESSION['newPath'] = $newPath;
 $_SESSION['fileExt'] = $fileExt;
 }
 }
}

There are a couple of things to note here.

$ERROR & $_SESSION['NEWPATH']

Firstly, note that I’m using a variable, $error, to log whether we hit any of the
hurdles. If no error occurs and the image is saved, we set a session variable,
$_SESSION['new_path'], to store the path to the saved image. This will
be helpful in the next step where we need to display the image and,
therefore, need to know its SRC.

I’m using a session variable rather than a simple variable, so when the time
comes for our PHP script to crop the image, we don’t have to pass it a
variable informing the script which image to use — the script will already
know the context, because it will remember this session variable. Whilst this
article doesn’t concern itself deeply with security, this is a simple precaution.
Doing this means that the user can affect only the image he uploaded,
rather than, potentially, someone else’s previously-saved image — the user

Smashing eBook #14│Mastering jQuery │ 31

is locked into manipulating only the image referenced in $error and has
no ability to enforce the PHP script to affect another image.

THE $_FILES SUPERGLOBAL

Note that even though the form was sent via POST, we access the file
upload not via the $_POST superglobal (i.e. variables in PHP which are
available in all scopes throughout a script), but via the special $_FILES
superglobal. PHP automatically assigns file fields to that, provided the form
was sent with the required enctype='multipart/form-data' attribute.
Unlike the $_POST and $_GET superglobals, the $_FILES superglobal
goes a little “deeper” and is actually a multi-dimensional array. Through this,
you can access not only the file itself but also a variety of meta data related
to it. You’ll see how we can use this information shortly. We use this meta
data in the third stage of validation above, namely checking that the file was
a valid image file. Let’s look at this code in a little more detail.

CONFIRMING THE UPLOAD IS AN IMAGE

Any time you’re allowing users to upload files to your server, you obviously
want to assume full control of precisely what sort of files you allow to be
uploaded. It should be blindingly obvious, but you don’t want people able to
upload just any file to you server – this needs to be something you control,
and tightly.

We could check by file extension – only this would be insecure. Just
because something has a .jpg extension, doesn’t mean its inner code is that
of a picture. Instead, we check by MIME-type, which is more secure (though
still not totally perfect).

To this end we check the uploaded file’s MIME-type – which lives in the
‘type’ property of its array – against a white list of allowed MIME-types.

Smashing eBook #14│Mastering jQuery │ 32

$allowedMIMEs = array('image/jpeg', 'image/gif', 'image/png');
foreach($allowedMIMEs as $mime) {
 if ($mime == $_FILES['img_upload']['type']) {
 $mimeSplitter = explode('/', $mime);
 $fileExt = $mimeSplitter[1];
 $newPath = 'imgs/'.$_POST['img_name'].'.'.$fileExt;
 break;
 }
}

If a match is found, we extract its extension and use that to build the name
we’ll use to save the file.

To extract the extension we exploit the fact that MIME-types are always in
the format something/something – i.e. we can rely on the forward slash. We
therefore ‘explode’ the string based on that delimited. Explode returns an
array of parts – in our case, two parts, the part of the MIME-type either side
of the slash. We know, therefore, that the second part of the array ([1]) is the
extension associated with the MIME-type.

Note that, if a matching MIME-type is found, we set two variables: $newPath
and $fileExt. Both of these will be important later to the PHP that actually
saves the file, but the former is also used, as you can see, by error scenario
4 as a means of detecting whether MIME look-up was successful.

SAVING THE FILE

All uploaded files are assigned a temporary home by the server until such
time as the session expires or they are moved. So saving the file means
moving the file from its temporary location to a permanent home. This is
done via the copy() function, which needs to know two rather obvious
things: what’s the path to the temporary file, and what’s the path to where
we want to put it.

The answer to the first question is read from the tmp_name part of the
$_FILES superglobal. The answer to the second is the full path, including

Smashing eBook #14│Mastering jQuery │ 33

new filename, to where you want it to live. So it is formed of the name of the
directory we set up to store images (/imgs), plus the new file name (i.e. the
value entered into the img_name field) and the extension. Let’s assign it to
its own variable, $newPath and then save the file:

$newPath = 'imgs/'.$_POST['img_name'].'.'.$fileExt;
...
copy($_FILES['img_upload']['tmp_name'],$newPath);

Reporting Back and Moving On
What happens next depends entirely on whether an error occurred, and we
can find it out by looking up whether $error is set. If it is, we need to
communicate this error back to the user. If it’s not set, it’s time to move on
and show the image and let the user manipulate it. Add the following above
your form:

<?php if (isset($error)) echo '<p id="error">'.$error.'</
p>'; ?>

If there’s an error, we’d want to show the form again. But the form is
currently set to show regardless of the situation. This needs to change, so
that it shows only if no image has been uploaded yet, i.e. if the form hasn’t
been submitted yet, or if it has but there was an error. We can check
whether an uploaded image has been saved by interrogating the
$_SESSION['newPath'] variable. Wrap your form HTML in the following
two lines of code:

Smashing eBook #14│Mastering jQuery │ 34

<?php if (!isset($_SESSION['newPath']) ||
isset($_GET['true'])) { ?>

<?php } else echo ''; ?>

Now the form appears only if an uploaded image isn’t registered — i.e.
$_SESSION['newPath'] isn’t set — or if new=true is found in the URL.
(This latter part provides us with a means of letting the user start over with a
new image upload should they wish so; we’ll add a link for this in a moment).
Otherwise, the uploaded image displays (we know where it lives because
we saved its path in $_SESSION['newPath']).

This is a good time to take stock of where we are, so try it out. Upload an
image, and verify that that it displays. Assuming it does, it’s time for our
JavaScript to provide some interactivity for image manipulation.

Adding Interactivity
First, let’s extend the line we just added so that we a) give the image an ID
to reference it later on; b) call the JavaScript itself (along with jQuery); and c)
we provide a “start again” link, so the user can start over with a new upload
(if necessary). Here is the code snippet:

<?php } else { ?>
 <img id="uploaded_image" src="<!--?php echo
$_SESSION['newPath'].'?'.rand(0, 100000); ?-->" />
 <p>start over with new image</
a><p></p>
 <script src="http://www.google.com/jsapi"></script>
 <script>google.load("jquery", "1.5");</script>
 <script src="js.js"></script>
<!--?php } ?-->

Note that I defined an ID for the image, not a class, because it’s a unique
element, and not one of the many (this sounds obvious, but many people fail
to observe this distinction when assigning IDs and classes). Note also, in the

Smashing eBook #14│Mastering jQuery │ 35

http://www.google.com/jsapi
http://www.google.com/jsapi

image’s SRC, I’m appending a random string. This is done to force the
browser not to cache the image once we’ve cropped it (since the SRC
doesn’t change).

Open js.js and let’s add the obligatory document ready handler (DRH),
required any time you’re using freestanding jQuery (i.e. not inside a custom
function) to reference or manipulate the DOM. Put the following JavaScript
inside this DRH:

$(function() {
 // all our JS code will go here
});

We’re providing the functionality to a user to crop the image, and it of
course means allowing him to drag a box area on the image, denoting the
part he wishes to keep. Therefore, the first step is to listen for a mousedown
event on the image, the first of three events involved in a drag action
(mouse down, mouse move and then, when the box is drawn, mouse up).

var dragInProgress = false;

$("#uploaded_image").mousedown(function(evt) {
 dragInProgress = true;
});

And in similar fashion, let’s listen to the final mouseup
event.$(window).mouseup(function() {
 dragInProgress = false;
});

Note that our mouseup event runs on window, not the image itself, since
it’s possible that the user could release the mouse button anywhere on the
page, not necessarily on the image.

Note also that the mousedown event handler is prepped to receive the
event object. This object holds data about the event, and jQuery always
passes it to your event handler, whether or not it’s set up to receive it. That

Smashing eBook #14│Mastering jQuery │ 36

object will be crucial later on in ascertaining where the mouse was when the
event fired. The mouseup event doesn’t need this, because all we care
about if is that the drag action is over and it doesn’t really matter where the
mouse is.

We’re tracking whether or not the mouse button is currently depressed in a
variable, . Why? Because, in a drag action, the middle event of the three
(see above) only applies if the first happened. That is, in a drag action, you
move the mouse whilst the mouse is down. If it’s not, our mousemove event
handler should exit. And here it is:

$("#uploaded_image").mousemove(function(evt) {
 if (!dragInProgress) return;
});

So now our three event handlers are set up. As you can see, the
mousemove event handler exits if it discovers that the mouse button is not
currently down, as we decided above it should be.

Now let’s extend these event handlers.

This is a good time to explain how our JavaScript will be simulating the drag
action being done by the user. The trick is to create a DIV on mousedown,
and position it at the mouse cursor. Then, as the mouse moves, i.e. the user
is drawing his box, that element should resize consistently to mimic that.

Let’s add, position and style our DIV. Before we add it, though, let’s remove
any previous such DIV, i.e. from a previous drag attempt. This ensures
there’s only ever one drag box, not several. Also, we want to log the mouse
coordinates at the time of mouse down, as we’ll need to reference these
later when it comes to drawing and resizing ourDIV. Extend the mousedown
event handler to become:

$("#uploaded_image").mousedown(function(evt) {
 dragInProgress = true;
 $("#drag_box").remove();

Smashing eBook #14│Mastering jQuery │ 37

 $("<div>").appendTo("body").attr("id",
"drag_box").css({left: evt.clientX, top: evt.clientY});
 mouseDown_left = evt.clientX;
 mouseDown_top = evt.clientY;
});

Notice that we don’t prefix the three variables there with the 'var'
keyword. That would make them accessible only within the mousedown
handler, but we need to reference them later in our mousemove handler.
Ideally, we’d avoid global variables (using a namespace would be better) but
for the purpose of keeping the code in this tutorial concise, they’ll do for
now.

Notice that we obtain the coordinates of where the event took place — i.e.
where the mouse was when the mouse button was depressed — by reading
the clientX and clientY properties of the event object, and it’s those we
use to position our DIV.

Let’s style the DIV by adding the following CSS to your stylesheet.

#drag_box { position: absolute; border: solid 1px #333;
background: #fff; opacity: .5; filter: alpha(opacity=50); z-
index: 10; }

Now, if you upload an image and then click it, the DIV will be inserted at
your mouse position. You won’t see it yet, as it’s got width and height zero;
only when we start dragging should it become visible, but if you use Firebug
or Dragonfly to inspect it, you will see it in the DOM.

So far, so good. Our drag box functionality is almost complete. Now we just
need to make it respond to the user’s mouse movement. What’s involved
here is very much what we did in the mousedown event handler when we
referenced the mouse coordinates.

Smashing eBook #14│Mastering jQuery │ 38

The key to this part is working out what properties should be updated, and
with what values. We’ll need to change the box’s left, top, width and
height.

Sounds pretty obvious. However, it’s not as simple as it sounds. Imagine that
the box was created at coordinates 40×40 and then the user drags the
mouse to coordinates 30×30. By updating the box’s left and top properties
to 30 and 30, the position of the top left corner of the box would be correct,
but the position of its bottom right corner would not be where the
mousedown event happened. The bottom corner would be 10 pixels north
west of where it should be!

To get around this, we need to compare the mousedown coordinates with
the current mouse coordinates. That’s why in our mousedown handler, we
logged the mouse coordinates at the time of mouse down. The box’s new
CSS values will be as follows:

• left: the lower of the two clientX coordinates

• width: the difference between the two clientX coordinates

• top: the lower of the two clientY coordinates

• height: the difference between the two clientY coordinates

So let’s extend the mousemove event handler to become:

$("#uploaded_image").mousemove(function(evt) {
 if (!dragInProgress) return;
 var newLeft = mouseDown_left < evt.clientX ?
mouseDown_left : evt.clientX;
 var newWidth = Math.abs(mouseDown_left - evt.clientX);
 var newTop = mouseDown_top < evt.clientY ? mouseDown_top :
evt.clientY;
 var newHeight = Math.abs(mouseDown_top - evt.clientY);
 $('#drag_box').css({left: newLeft, top: newTop, width:
newWidth, height: newHeight});
});

Smashing eBook #14│Mastering jQuery │ 39

Notice also that, to establish the new width and height, we didn't have to do
any comparison. Although we don't know, for example, which is lower out of
the mousedown left and the current mouse left, we can subtract either from
the other and counter any negative result by forcing the resultant number to
be positive via Math.abs(), i.e.
result = 50 – 20; //30
result = Math.abs(20 – 50); //30 (-30 made positive)

One final, small but important thing. When Firefox and Internet Explorer
detect drag attempts on images they assume the user is trying to drag out
the image onto their desktop, or into Photoshop, or wherever. This has the
potential to interfere with our creation. The solution is to stop the event from
doing its default action. The easiest way is to return false. What's interesting,
though, is that Firefox interprets drag attempts as beginning on mouse
down, whilst IE interprets them as beginning on mouse move. So we need
to append the following, simple line to the ends of both of these functions:

return false;

Try your application out now. You should have full drag box functionality.

Saving the Cropped Image
And so to the last part, saving the modified image. The plan here is simple:
we need to grab the coordinates and dimensions of the drag box, and pass
them to our PHP script which will use them to crop the image and save a
new version.

GRABBING THE DRAG BOX DATA

It makes sense to grab the drag box's coordinates and dimensions in our
mouseup handler, since it denotes the end of the drag action. We could do
that with the following:

var db = $("#drag_box");

Smashing eBook #14│Mastering jQuery │ 40

var db_data = {left: db.offset().left, top: db.offset().top,
width: db.width(), height: db.height()};

There's a problem, though, and it has to do with the drag box's coordinates.
The coordinates we grab above are relative to the body, not the uploaded
image. So to correct this, we need to subtract the position, relative to the
body, of the image itself, from them. So let's add this instead:
var db = $("#drag_box");
if (db.width() == 0 || db.height() == 0 || db.length == 0)
return;
var img_pos = $('#uploaded_image').offset();
var db_data = {
 left: db.offset().left – img_pos.left,
 top: db.offset().top - img_pos.top,
 width: db.width(),
 height: db.height()
};

What's happening there? We're first referencing the drag box in a local
shortcut variable, db, and then store the four pieces of data we need to
know about it, its left, top, width and height, in an object db_data.
The object isn't essential: we could use separate variables, but this
approach groups the data together under one roof and might be considered
tidier.

Note the condition on the second line, which guards against simple,
dragless clicks to the image being interpreted as crop attempts. In these
cases, we return, i.e. do nothing.

Note also that we get the left and top coordinates via jQuery's offset()
method. This returns the dimensions of an object relative to the document,
rather than relative to any parent or ancestor with relative positioning, which
is what position() or css('top/right/bottom/left') would
return. However, since we appended our drag box directly to the body, all of
these three techniques would work the same in our case. Equally, we get
the width and height via the width() and height() methods, rather than

Smashing eBook #14│Mastering jQuery │ 41

via css('width/height'), as the former omits 'px' from the returned
values. Since our PHP script will be using these coordinates in a
mathematical fashion, this is the more suitable option.

For more information on the distinction between all these methods, see my
previous article on SmashingMag, Commonly Confused Bits of jQuery.

Let's now throw out a confirm dialogue box to check that the user wishes to
proceed in cropping the image using the drag box they've drawn. If so, time
to pass the data to our PHP script. Add a bit more to your mouseup handler:

if (confirm("Crop the image using this drag box?")) {
 location.href = "index.php?
crop_attempt=true&crop_l="+db_data.left+"&crop_t="+
db_data.top+"&crop_w="+db_data.width
+"&crop_h="+db_data.height;
} else {
 db.remove();
}

So if the user clicks 'OK' on the dialogue box that pops up, we redirect to
the same page we're on, but passing on the four pieces of data we need to
give to our PHP script. We also pass it a flag crop_attempt, which our
PHP script can detect, so it knows what action we'd like it to do. If the user
clicks 'Cancel', we remove the drag box (since it's clearly unsuitable). Onto
the PHP...

PHP: SAVING THE MODIFIED FILE

Remember we said that our image_manipulation.php had two tasks — one
to first save the uploaded image and another to save the cropped version of
the image? It's time to extend the script to handle the latter request. Append
the following to image_manipulation.php:

Smashing eBook #14│Mastering jQuery │ 42

http://www.smashingmagazine.com/2010/08/04/commonly-confused-bits-of-jquery/
http://www.smashingmagazine.com/2010/08/04/commonly-confused-bits-of-jquery/

/* -----------------
| CROP saved image
----------------- */

if (isset($_GET["crop_attempt"])) {
 //cropping code here
}

So just like before, we condition-off the code area and make sure a flag is
present before executing the code. As for the code itself, we need to go
back into the land of GD. We need to create two image handles. Into one,
we import the uploaded image; the second one will be where we paste the
cropped portion of the uploaded image into, so we can essentially think of
these two as source and destination. We copy from the source onto the
destination canvas via the GD function imagecopy(). This needs to know
8 pieces of information:

• destination, the destination image handle

• source, the source image handle

• destination X, the left position to paste TO on the destination
image handle

• destination Y, the top position “ “ “ “

• source X, the left position to grab FROM on the source image handle

• source Y, the top position “ “ “ “

• source W, the width (counting from source X) of the portion to be
copied over from the source image handle

• source H, the height (counting from source Y) “ “ “ “

Fortunately, we already have the data necessary to pass to the final 6
arguments in the form of the JavaScript data we collected and passed back
to the page in our mouseup event handler a few moments ago.

Smashing eBook #14│Mastering jQuery │ 43

Let's create our first handle. As I said, we'll import the uploaded image into
it. That means we need to know its file extension, and that's why we saved it
as a session variable earlier.

switch($_SESSION["fileExt"][1]) {
 case "jpg": case "jpeg":
 var source_img =
imagecreatefromjpeg($_SESSION["newPath"]);
 break;
 case "gif":
 var source_img =
imagecreatefromgif($_SESSION["newPath"]);
 break;
 case "png":
 var source_img =
imagecreatefrompng($_SESSION["newPath"]);
 break;
}

As you can see, the file type of the image determines which function we use
to open it into an image handle. Now let's extend this switch statement to
create the second image handle, the destination canvas. Just as the
function for opening an existing image depends on image type, so too does
the function used to create a blank image. Hence, let's extend our switch
statement:
switch($_SESSION["fileExt"][1]) {
 case "jpg": case "jpeg":
 $source_img = imagecreatefromjpeg($_SESSION["newPath"]);
 $dest_ing = imagecreatetruecolor($_GET["crop_w"],
$_GET["crop_h"]);
 break;
 case "gif":
 $source_img = imagecreatefromgif($_SESSION["newPath"]);
 $dest_ing = imagecreate($_GET["crop_w"],
$_GET["crop_h"]);
 break;
 case "png":
 $source_img = imagecreatefrompng($_SESSION["newPath"]);

Smashing eBook #14│Mastering jQuery │ 44

 $dest_ing = imagecreate($_GET["crop_w"],
$_GET["crop_h"]);
 break;
}

You'll notice that the difference between opening a blank image and
opening one from an existing or uploaded file is that, for the former, you
must specify the dimensions. In our case, that's the width and height of the
drag box, which we passed into the page via the $_GET['crop_w'] and
$_GET['crop_h'] vars respectively.

So now we have our two canvases, it's time to do the copying. The following
is one function call, but since it takes 8 arguments, I'm breaking it onto
several lines to make it readable. Add it after your switch statement:

imagecopy(
 $dest_img,
 $source_img,
 0,
 0,
 $_GET["crop_l"],
 $_GET["crop_t"],
 $_GET["crop_w"],
 $_GET["crop_h"]
);

The final part is to save the cropped image. For this tutorial, we'll overwrite
the original file, but you might like to extend this application, so the user has
the option of saving the cropped image as a separate file, rather than losing
the original.

Saving the image is easy. We just call a particular function based on (yes,
you guessed it) the image's type. We pass in two arguments: the image
handle we're saving, and the file name we want to save it as. So let's do that:

switch($_SESSION["fileExt"][1]) {
 case "jpg": case "jpeg":
 imagejpeg($dest_img, $_SESSION["newPath"]); break;

Smashing eBook #14│Mastering jQuery │ 45

 case "gif":
 imagegif($dest_img, $_SESSION["newPath"]); break;
 case "png":
 imagepng($dest_img, $_SESSION["newPath"]); break;
}

It's always good to clean up after ourselves - in PHP terms that means
freeing up memory, so let's destroy our image handlers now that we don't
need them anymore.

imagedestroy($dest_img);
imagedestroy($source_img);

Lastly, we want to redirect to the index page. You might wonder why we'd
do this, since we're on it already (and have been the whole time). The trick is
that by redirecting, we can lose the arguments we passed in the URL. We
don't want these hanging around because, if the user refreshes the page,
he'll invoke the PHP crop script again (since it will detect the arguments).
The arguments have done their job, so now they have to go, so we redirect
to the index page without these arguments. Add the following line to force
the redirect:

header("Location: index.php"); //bye bye arguments

Final Touches
So that's it. We now have a fully-working facility to first upload then crop an
image, and save it to the server. Don't forget you can download the source
files (updated) for your reference.

There's plenty of ways you could extend this simple application. Explore GD
(and perhaps other image libraries for PHP); you can do wonders with
images, resizing them, distorting them, changing them to greyscale and
much more. Another thing to think about would be security; this tutorial
does not aim to cover that here, but if you were working in a user control

Smashing eBook #14│Mastering jQuery │ 46

http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip

panel environment, you'd want to make sure the facility was secure and that
the user could not edit other user's files.

With this in mind, you might make the saved file's path more complex, e.g. if
the user named it pic.jpg, you might actually name it on the server
34iweshfjdshkj4r_pic.jpg. You could then hide this image path, e.g.
by specifying the SRC attribute as 'getPic.php' instead of referencing the
image directly inside an image's SRC attribute. That PHP script would then
open and display the saved file (by reading its path in the session variable),
and the user would never be aware of its path.

The possibilities are endless, but hopefully this tutorial has given you a
starting point.

Smashing eBook #14│Mastering jQuery │ 47

Make Your Own Bookmarklets With
jQuery

Tommy Saylor

Bookmarklets are small JavaScript-powered applications in link form. Often
“one-click” tools and functions, they’re typically used to extend the
functionality of the browser and to interact with Web services. They can do
things like post to your WordPress or Tumblr blog, submit any selected text
to Google Search, or modify a current page’s CSS… and many other things!

Because they run on JavaScript (a client-side programming language),
bookmarklets (sometimes called “favelets”) are supported by all major
browsers on all platforms, without any additional plug-ins or software
needed. In most instances, the user can just drag the bookmarklet link to
their toolbar, and that’s it!

Smashing eBook #14│Mastering jQuery │ 48

In this article, we’ll go through how to make your own bookmarklets, using
the jQuery JavaScript framework.

Ge#ing Started
You can make a faux URI with JavaScript by prefacing the code with
javascript:, like so:

Alert!

Notice that when we put it in the href attribute, we replaced what would
normally be double quotes (“) with single quotes (‘), so the href attribute’s
value and JavaScript function don’t get cut off midway. That’s not the only
way to circumvent that problem, but it’ll do for now.

We can take this concept as far as we want, adding multiple lines of
JavaScript inside these quote marks, with each line separated by a
semicolon (;), sans line break. If your bookmarklet won’t need any updating
later, this method of “all inclusiveness” will probably be fine. For this tutorial,
we’ll be externalizing the JavaScript code and storing it in a .JS file, which
we’ll host somewhere else.

A link to an externalized bookmarklet:

<a href="javascript:(function()
{document.body.appendChild(document.createElement('script')).s
rc='http://foo.bar/baz.js';})();">Externalized Bookmarklet

This looks for the document’s body and appends a <script> element to it
with a src we’ve defined, in this case, “http://foo.bar/baz.js”. Keep in mind
that if the user is on an empty tab or a place which, for some reason, has no
body, nothing will happen as nothing can be appended to.

You can host that .JS file wherever is convenient, but keep bandwidth in
mind if you expect a ton of traffic.

Smashing eBook #14│Mastering jQuery │ 49

http://jquery.com/
http://jquery.com/
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://smashingmagazine.com
http://smashingmagazine.com
http://foo.bar/baz.js
http://foo.bar/baz.js

Enter jQuery

Since many of you may be familiar with the jQuery framework, we’ll use that
to build our bookmarklet.

The best way to get it inside of our .JS file is to append it from Google’s
CDN, conditionally wrapped to only include it if necessary:

(function(){

 // the minimum version of jQuery we want
 var v = "1.3.2";

 // check prior inclusion and version
 if (window.jQuery === undefined || window.jQuery.fn.jquery <
v) {
 var done = false;
 var script = document.createElement("script");
 script.src = "http://ajax.googleapis.com/ajax/libs/
jquery/" + v + "/jquery.min.js";
 script.onload = script.onreadystatechange = function(){
 if (!done && (!this.readyState || this.readyState ==
"loaded" || this.readyState == "complete")) {
 done = true;
 initMyBookmarklet();
 }
 };
 document.getElementsByTagName("head")
[0].appendChild(script);
 } else {
 initMyBookmarklet();
 }

 function initMyBookmarklet() {
 (window.myBookmarklet = function() {
 // your JavaScript code goes here!
 })();
 }

Smashing eBook #14│Mastering jQuery │ 50

http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/

})();

(Script appending from jQuery's source code, adapted by Paul Irish:
http://pastie.org/462639)

That starts by defining v, the minimum version of jQuery that our code can
safely use. Using that, it then checks to see if jQuery needs to be loaded. If
so, it adds it to the page with cross-browser event handling support to run
initMyBookmarklet when jQuery's ready. If not, it jumps straight to
initMyBookmarklet, which adds the myBookmarklet to the global
window object.

Grabbing Information
Depending on what kind of bookmarklet you're making, it may be
worthwhile to grab information from the current page. The two most
important things are document.location, which returns the page's URL,
and document.title, which returns the page's title.

You can also return any text the user may have selected, but it's a little more
complicated:

function getSelText() {
 var SelText = '';
 if (window.getSelection) {
 SelText = window.getSelection();
 } else if (document.getSelection) {
 SelText = document.getSelection();
 } else if (document.selection) {
 SelText = document.selection.createRange().text;
 }
 return SelText;
}

Smashing eBook #14│Mastering jQuery │ 51

http://pastie.org/462639
http://pastie.org/462639

(Modified from http://www.codetoad.com/
javascript_get_selected_text.asp)

Another option is to use JavaScript's input function to query the user with
a pop-up:

var yourname = prompt("What's your name?","my name...");

Dealing with Characters
If you'll be putting all your JavaScript into the link itself rather than an
external file, you may want a better way to nest double quotes (as in, "a
quote 'within a quote'") than just demoting them into singles. Use " in
their place (as in, "a quote "within a quote""):

<a
href="javascript:var%20yourname=prompt("What%20is%20your
%20name?");alert%20("Hello,%20"+yourname+"!
")">What is your name?

In that example, we also encoded the spaces into %20, which may be
beneficial for older browsers or to make sure the link doesn't fall apart in
transit somewhere.

Within JavaScript, you may sometimes need to escape quotes. You can do
so by prefacing them with a backslash (\):

alert("This is a \"quote\" within a quote.");

Smashing eBook #14│Mastering jQuery │ 52

http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp

Pu#ing It All Together
Just for fun, let's make a little bookmarklet that checks to see if there's a
selected word on the page, and, if there is, searches Wikipedia and shows
the results in a jQuery-animated iFrame.

We'll start by combining the framework from "Enter jQuery" with the text
selection function from "Grabbing Information":

(function(){

 var v = "1.3.2";

 if (window.jQuery === undefined || window.jQuery.fn.jquery <
v) {
 var done = false;
 var script = document.createElement("script");
 script.src = "http://ajax.googleapis.com/ajax/libs/
jquery/" + v + "/jquery.min.js";
 script.onload = script.onreadystatechange = function(){
 if (!done && (!this.readyState || this.readyState ==
"loaded" || this.readyState == "complete")) {
 done = true;
 initMyBookmarklet();
 }
 };
 document.getElementsByTagName("head")
[0].appendChild(script);
 } else {
 initMyBookmarklet();
 }

 function initMyBookmarklet() {
 (window.myBookmarklet = function() {
 function getSelText() {
 var s = '';
 if (window.getSelection) {
 s = window.getSelection();

Smashing eBook #14│Mastering jQuery │ 53

http://wikipedia.org/
http://wikipedia.org/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/

 } else if (document.getSelection) {
 s = document.getSelection();
 } else if (document.selection) {
 s = document.selection.createRange().text;
 }
 return s;
 }
 // your JavaScript code goes here!
 })();
 }

})();

Next, we'll look for any selected text and save it to a variable, "s". If there's
nothing selected, we'll try to prompt the user for something:

var s = "";
s = getSelText();
if (s == "") {
 var s = prompt("Forget something?");
}

After checking to make sure we received an actual value for "s", we'll
append the new content to the document's body. In it will be: a container div
("wikiframe"), a background veil ("wikiframe_veil") and a "Loading..."
paragraph, the iFrame itself, and some CSS to make things look pretty and
affix everything above the actual page.

if ((s != "") && (s != null)) {
 $("body").append("\
 <div id='wikiframe'>\
 <div id='wikiframe_veil' style=''>\
 <p>Loading...</p>\
 </div>\
 <iframe src='http://en.wikipedia.org/w/index.php?
&search="+s+"' onload=\"$('#wikiframe iframe').slideDown(500);
\">Enable iFrames.</iframe>\
 <style type='text/css'>\

Smashing eBook #14│Mastering jQuery │ 54

http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=

 #wikiframe_veil { display: none; position: fixed;
width: 100%; height: 100%; top: 0; left: 0; background-color:
rgba(255,255,255,.25); cursor: pointer; z-index: 900; }\
 #wikiframe_veil p { color: black; font: normal normal
bold 20px/20px Helvetica, sans-serif; position: absolute; top:
50%; left: 50%; width: 10em; margin: -10px auto 0 -5em; text-
align: center; }\
 #wikiframe iframe { display: none; position: fixed;
top: 10%; left: 10%; width: 80%; height: 80%; z-index: 999;
border: 10px solid rgba(0,0,0,.5); margin: -5px 0 0 -5px; }\
 </style>\
 </div>");
 $("#wikiframe_veil").fadeIn(750);
}

We set the iFrame's src attribute to Wikipedia's search URL plus "s". Its CSS
sets it to display: none; by default, so we can have it make a grander
entrance when its page is loaded via its onload attribute and a jQuery
animation.

After all that's added to the page, we'll fade in the background veil.

Notice the backslashes at the end of each line of appended HTML. These
allow for multiple rows and make everything easier on the eyes for editing.

Almost done, but we need to make sure these elements don't already exist
before appending them. We can accomplish that by throwing the above
code inside a ($("#wikiframe").length == 0) conditional
statement, accompanied by some code to remove it all if the statement
returns negative.

The end result .JS file:

Smashing eBook #14│Mastering jQuery │ 55

(function(){

 var v = "1.3.2";

 if (window.jQuery === undefined || window.jQuery.fn.jquery <
v) {
 var done = false;
 var script = document.createElement("script");
 script.src = "http://ajax.googleapis.com/ajax/libs/
jquery/" + v + "/jquery.min.js";
 script.onload = script.onreadystatechange = function(){
 if (!done && (!this.readyState || this.readyState ==
"loaded" || this.readyState == "complete")) {
 done = true;
 initMyBookmarklet();
 }
 };
 document.getElementsByTagName("head")
[0].appendChild(script);
 } else {
 initMyBookmarklet();
 }

 function initMyBookmarklet() {
 (window.myBookmarklet = function() {
 function getSelText() {
 var s = '';
 if (window.getSelection) {
 s = window.getSelection();
 } else if (document.getSelection) {
 s = document.getSelection();
 } else if (document.selection) {
 s = document.selection.createRange().text;
 }
 return s;
 }
 if ($("#wikiframe").length == 0) {
 var s = "";
 s = getSelText();

Smashing eBook #14│Mastering jQuery │ 56

http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/
http://ajax.googleapis.com/ajax/libs/jquery/

 if (s == "") {
 var s = prompt("Forget something?");
 }
 if ((s != "") && (s != null)) {
 $("body").append("\
 <div id='wikiframe'>\
 <div id='wikiframe_veil' style=''>\
 <p>Loading...</p>\
 </div>\
 <iframe src='http://en.wikipedia.org/w/
index.php?&search="+s+"' onload=\"$('#wikiframe
iframe').slideDown(500);\">Enable iFrames.</iframe>\
 <style type='text/css'>\
 #wikiframe_veil { display: none;
position: fixed; width: 100%; height: 100%; top: 0; left: 0;
background-color: rgba(255,255,255,.25); cursor: pointer; z-
index: 900; }\
 #wikiframe_veil p { color: black; font:
normal normal bold 20px/20px Helvetica, sans-serif; position:
absolute; top: 50%; left: 50%; width: 10em; margin: -10px auto
0 -5em; text-align: center; }\
 #wikiframe iframe { display: none;
position: fixed; top: 10%; left: 10%; width: 80%; height: 80%;
z-index: 999; border: 10px solid rgba(0,0,0,.5); margin: -5px
0 0 -5px; }\
 </style>\
 </div>");
 $("#wikiframe_veil").fadeIn(750);
 }
 } else {
 $("#wikiframe_veil").fadeOut(750);
 $("#wikiframe iframe").slideUp(500);
 setTimeout("$('#wikiframe').remove()", 750);
 }
 $("#wikiframe_veil").click(function(event){
 $("#wikiframe_veil").fadeOut(750);
 $("#wikiframe iframe").slideUp(500);
 setTimeout("$('#wikiframe').remove()", 750);
 });

Smashing eBook #14│Mastering jQuery │ 57

http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=
http://en.wikipedia.org/w/index.php?&search=

 })();
 }

})();

Note that we fade out and remove the "wikiframe" content both if the user
re-clicks the bookmarklet after it's loaded and if the user clicks on its
background veil.

The HTML bookmarklet to load that script:

<a href="javascript:(function(){if(window.myBookmarklet!
==undefined){myBookmarklet();}
else{document.body.appendChild(document.createElement('script'
)).src='http://iamnotagoodartist.com/stuff/wikiframe2.js?';}})
();">WikiFrame

See that (window.myBookmarklet!==undefined) conditional? That
makes sure the .JS file is only appended once and jumps straight to running
the myBookmarklet() function if it already exists.

Make It Be#er
This example was fun, but it definitely could be better.

For starters, it isn't compressed. If your script will be accessed a lot, keeping
two versions of your code may be a good idea: one normal working version
and one compressed minimized version. Serving the compressed one to
your users will save loading time for them and bandwidth for you. Check the
resource links below for some good JavaScript compressors.

While the bookmarklet technically works in IE6, its use of static positioning
means that it just kind of appends itself to the bottom of the page. Not very
user-friendly! With some more time and attention to rendering differences in
IE, the bookmarklet could be made to function and look the same (or at least
comparable) in different browsers.

Smashing eBook #14│Mastering jQuery │ 58

http://smashingmagazine.com
http://smashingmagazine.com
http://smashingmagazine.com
http://smashingmagazine.com
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/

In our example, we used jQuery, which is an excellent tool for developing
more advanced JavaScript applications. But if your bookmarklet is simple
and doesn't require a lot of CSS manipulation or animation, chances are you
may not need something so advanced. Plain old JavaScript might suffice.
Remember, the less you force the user to load, the faster their experience
and the happier they will be.

THINGS TO KEEP IN MIND AND BEST PRACTICES

Untested code is broken code, as old-school programmers will tell you.
While bookmarklets will run on any browser that supports JavaScript, testing
them in as many browsers as you can wouldn't hurt. Especially when
working with CSS, a whole slew of variables can affect the way your script
works. At the very least, enlist your friends and family to test the
bookmarklet on their computers and their browsers.

Smashing eBook #14│Mastering jQuery │ 59

Speaking of CSS, remember that any content you add to a page will be
affected by that page's CSS. So, applying a reset to your elements to
override any potentially inherited margins, paddings or font stylings would
be wise.

Because bookmarklets are, by definition, extraneous, many of the guidelines
for JavaScript—such as unobtrusiveness and graceful degradation—aren't
as sacred as they normally are. For the most part, though, a healthy
understanding of best practices for traditional JavaScript and its frameworks
will only help you:

• Develop a coding style and stick to it. Keep it consistent, and keep it
neat.

• Take it easy on the browser. Don't run processes that you don't need,
and don't create unnecessary global variables.

• Use comments where appropriate. They make jumping back into the
code later on much easier.

• Avoid shorthand JavaScript. Use plenty of semi-colons, even when your
browser would let you get away without them.

Further Resources

HELPFUL JAVASCRIPT TOOLS

• JSLint
JavaScript validation tool.

• Bookmarklet Builder
Made way back in 2004, but still useful.

• List of Really Useful Free Tools for JavaScript Developers
Courtesy of W3Avenue.

Smashing eBook #14│Mastering jQuery │ 60

http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://net.tutsplus.com/tutorials/javascript-ajax/24-javascript-best-practices-for-beginners/
http://net.tutsplus.com/tutorials/javascript-ajax/24-javascript-best-practices-for-beginners/
http://www.smashingmagazine.com/2008/09/16/jquery-examples-and-best-practices/
http://www.smashingmagazine.com/2008/09/16/jquery-examples-and-best-practices/
http://www.jslint.com/
http://www.jslint.com/
http://subsimple.com/bookmarklets/jsbuilder.htm
http://subsimple.com/bookmarklets/jsbuilder.htm
http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/
http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/

• JS Bin
Open-source collaborative JavaScript debugging tool.

• How to Dynamically Insert Javascript and CSS
A well-written examination of JavaScript and CSS appending, and its
potential pitfalls.

• Run jQuery Code Bookmarklet
A pretty cool script that checks for and loads jQuery all within the
bookmarklet. Also has a handy generator.

• Google AJAX Libraries API
Do you prefer Prototype or MooTools to jQuery? Load your preference
straight from Google and save yourself the bandwidth.

JAVASCRIPT AND CSS COMPRESSORS

• Online Javascript Compression Tool
JavaScript compressor, with both Minify and Packer methods.

• Clean CSS
CSS formatter and optimizer, based on csstidy, with a nice GUI and
plenty of options.

• Scriptalizer
Combines and compresses multiple JavaScript and/or CSS files.

• JavaScript Unpacker and Beautifier
Useful for translating super-compressed code into something more
human-legible (and vice versa).

COLLECTIONS

• myBookmarklets

• Bookmarklets.com

Smashing eBook #14│Mastering jQuery │ 61

http://jsbin.com/
http://jsbin.com/
http://www.hunlock.com/blogs/Howto_Dynamically_Insert_Javascript_And_CSS
http://www.hunlock.com/blogs/Howto_Dynamically_Insert_Javascript_And_CSS
http://benalman.com/projects/run-jquery-code-bookmarklet/
http://benalman.com/projects/run-jquery-code-bookmarklet/
http://benalman.com/code/test/jquery-run-code-bookmarklet/
http://benalman.com/code/test/jquery-run-code-bookmarklet/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://jscompress.com/
http://jscompress.com/
http://www.cleancss.com/
http://www.cleancss.com/
http://csstidy.sourceforge.net/
http://csstidy.sourceforge.net/
http://scriptalizer.com/
http://scriptalizer.com/
http://jsbeautifier.org/
http://jsbeautifier.org/
http://krapplack.de/?u=/bookmarklets/
http://krapplack.de/?u=/bookmarklets/
http://www.bookmarklets.com/
http://www.bookmarklets.com/

• Bookmarklets, Favelets and Snippets
Via Smashing Magazine.

• Quix
"Your Bookmarklets, On Steroids."

• Jesse's Bookmarklets

• Marklets

Smashing eBook #14│Mastering jQuery │ 62

http://www.smashingmagazine.com/2007/01/24/bookmarklets-favelets-and-snippets/
http://www.smashingmagazine.com/2007/01/24/bookmarklets-favelets-and-snippets/
http://quixapp.com/
http://quixapp.com/
https://www.squarefree.com/bookmarklets/
https://www.squarefree.com/bookmarklets/
http://www.marklets.com/bookmarklets/
http://www.marklets.com/bookmarklets/

Essential jQuery Plugin Pa#erns

Addy Osmani

I occasionally write about implementing design patterns in JavaScript.
They’re an excellent way of building upon proven approaches to solving
common development problems, and I think there’s a lot of benefit to using
them. But while well-known JavaScript patterns are useful, another side of
development could benefit from its own set of design patterns: jQuery
plugins. The official jQuery plugin authoring guide offers a great starting
point for getting into writing plugins and widgets, but let’s take it further.

Plugin development has evolved over the past few years. We no longer
have just one way to write plugins, but many. In reality, certain patterns
might work better for a particular problem or component than others.

Some developers may wish to use the jQuery UI widget factory; it’s great for
complex, flexible UI components. Some may not. Some might like to
structure their plugins more like modules (similar to the module pattern) or
use a more formal module format such as AMD (asynchronous module
definition). Some might want their plugins to harness the power of
prototypal inheritance. Some might want to use custom events or pub/sub
to communicate from plugins to the rest of their app. And so on.

I began to think about plugin patterns after noticing a number of efforts to
create a one-size-fits-all jQuery plugin boilerplate. While such a boilerplate is
a great idea in theory, the reality is that we rarely write plugins in one fixed
way, using a single pattern all the time.

Let’s assume that you’ve tried your hand at writing your own jQuery plugins
at some point and you’re comfortable putting together something that
works. It’s functional. It does what it needs to do, but perhaps you feel it

Smashing eBook #14│Mastering jQuery │ 63

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://ajpiano.com/widgetfactory/
http://ajpiano.com/widgetfactory/
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD

could be structured better. Maybe it could be more flexible or could solve
more issues. If this sounds familiar and you aren’t sure of the differences
between many of the different jQuery plugin patterns, then you might find
what I have to say helpful.

My advice won’t provide solutions to every possible pattern, but it will cover
popular patterns that developers use in the wild.

Note: This post is targeted at intermediate to advanced developers. If
you don’t feel you’re ready for this just yet, I’m happy to recommend the
official jQuery Plugins/Authoring guide, Ben Alman’s plugin style guide
and Remy Sharp’s “Signs of a Poorly Written jQuery Plugin.”

Pa#erns
jQuery plugins have very few defined rules, which one of the reasons for the
incredible diversity in how they’re implemented. At the most basic level, you
can write a plugin simply by adding a new function property to jQuery’s
$.fn object, as follows:

$.fn.myPluginName = function() {
 // your plugin logic
};

This is great for compactness, but the following would be a better
foundation to build on:

(function($){
 $.fn.myPluginName = function() {
 // your plugin logic
 };
})(jQuery);

Here, we’ve wrapped our plugin logic in an anonymous function. To ensure
that our use of the $ sign as a shorthand creates no conflicts between
jQuery and other JavaScript libraries, we simply pass it to this closure, which

Smashing eBook #14│Mastering jQuery │ 64

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/

maps it to the dollar sign, thus ensuring that it can’t be affected by anything
outside of its scope of execution.

An alternative way to write this pattern would be to use $.extend, which
enables you to define multiple functions at once and which sometimes make
more sense semantically:

(function($){
 $.extend($.fn, {
 myplugin: function(){
 // your plugin logic
 }
 });
})(jQuery);

We could do a lot more to improve on all of this; and the first complete
pattern we’ll be looking at today, the lightweight pattern, covers some best
practices that we can use for basic everyday plugin development and that
takes into account common gotchas to look out for.

SOME QUICK NOTES

You can find all of the patterns from this post in this GitHub repository.

While most of the patterns below will be explained, I recommend reading
through the comments in the code, because they will offer more insight into
why certain practices are best.

I should also mention that none of this would be possible without the
previous work, input and advice of other members of the jQuery community.
I’ve listed them inline with each pattern so that you can read up on their
individual work if interested.

Smashing eBook #14│Mastering jQuery │ 65

https://github.com/addyosmani/jquery-plugin-patterns/
https://github.com/addyosmani/jquery-plugin-patterns/

A Lightweight Start
Let’s begin our look at patterns with something basic that follows best
practices (including those in the jQuery plugin-authoring guide). This pattern
is ideal for developers who are either new to plugin development or who
just want to achieve something simple (such as a utility plugin). This
lightweight start uses the following:

• Common best practices, such as a semi-colon before the function’s
invocation; window, document, undefined passed in as
arguments; and adherence to the jQuery core style guidelines.

• A basic defaults object.

• A simple plugin constructor for logic related to the initial creation and
the assignment of the element to work with.

• Extending the options with defaults.

• A lightweight wrapper around the constructor, which helps to avoid
issues such as multiple instantiations.

/*!
 * jQuery lightweight plugin boilerplate
 * Original author: @ajpiano
 * Further changes, comments: @addyosmani
 * Licensed under the MIT license
 */

// the semi-colon before the function invocation is a safety
// net against concatenated scripts and/or other plugins
// that are not closed properly.
;(function ($, window, document, undefined) {

 // undefined is used here as the undefined global
 // variable in ECMAScript 3 and is mutable (i.e. it can
 // be changed by someone else). undefined isn't really

Smashing eBook #14│Mastering jQuery │ 66

 // being passed in so we can ensure that its value is
 // truly undefined. In ES5, undefined can no longer be
 // modified.

 // window and document are passed through as local
 // variables rather than as globals, because this
(slightly)
 // quickens the resolution process and can be more
 // efficiently minified (especially when both are
 // regularly referenced in your plugin).

 // Create the defaults once
 var pluginName = 'defaultPluginName',
 defaults = {
 propertyName: "value"
 };

 // The actual plugin constructor
 function Plugin(element, options) {
 this.element = element;

 // jQuery has an extend method that merges the
 // contents of two or more objects, storing the
 // result in the first object. The first object
 // is generally empty because we don't want to alter
 // the default options for future instances of the
plugin
 this.options = $.extend({}, defaults, options) ;

 this._defaults = defaults;
 this._name = pluginName;

 this.init();
 }

 Plugin.prototype.init = function () {
 // Place initialization logic here
 // You already have access to the DOM element and
 // the options via the instance, e.g. this.element

Smashing eBook #14│Mastering jQuery │ 67

 // and this.options
 };

 // A really lightweight plugin wrapper around the
constructor,
 // preventing against multiple instantiations
 $.fn[pluginName] = function (options) {
 return this.each(function () {
 if (!$.data(this, 'plugin_' + pluginName)) {
 $.data(this, 'plugin_' + pluginName,
 new Plugin(this, options));
 }
 });
 }

})(jQuery, window, document);

FURTHER READING

• Plugins/Authoring, jQuery

• “Signs of a Poorly Written jQuery Plugin,” Remy Sharp

• “How to Create Your Own jQuery Plugin,” Elijah Manor

• “Style in jQuery Plugins and Why It Matters,” Ben Almon

• “Create Your First jQuery Plugin, Part 2,” Andrew Wirick

“Complete” Widget Factory
While the authoring guide is a great introduction to plugin development, it
doesn’t offer a great number of conveniences for obscuring away from
common plumbing tasks that we have to deal with on a regular basis.

The jQuery UI Widget Factory is a solution to this problem that helps you
build complex, stateful plugins based on object-oriented principles. It also

Smashing eBook #14│Mastering jQuery │ 68

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://msdn.microsoft.com/en-us/scriptjunkie/ff608209
http://msdn.microsoft.com/en-us/scriptjunkie/ff608209
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://enterprisejquery.com/2010/07/create-your-first-jquery-plugin-part-2-revising-your-plugin/
http://enterprisejquery.com/2010/07/create-your-first-jquery-plugin-part-2-revising-your-plugin/

eases communication with your plugin’s instance, obfuscating a number of
the repetitive tasks that you would have to code when working with basic
plugins.

In case you haven’t come across these before, stateful plugins keep track of
their current state, also allowing you to change properties of the plugin after
it has been initialized.

One of the great things about the Widget Factory is that the majority of the
jQuery UI library actually uses it as a base for its components. This means
that if you’re looking for further guidance on structure beyond this template,
you won’t have to look beyond the jQuery UI repository.

Back to patterns. This jQuery UI boilerplate does the following:

• Covers almost all supported default methods, including triggering
events.

• Includes comments for all of the methods used, so that you’re never
unsure of where logic should fit in your plugin.

/*!
 * jQuery UI Widget-factory plugin boilerplate (for 1.8/9+)
 * Author: @addyosmani
 * Further changes: @peolanha
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 // define your widget under a namespace of your choice
 // with additional parameters e.g.
 // $.widget("namespace.widgetname", (optional) - an
 // existing widget prototype to inherit from, an object
 // literal to become the widget's prototype);

 $.widget("namespace.widgetname" , {

Smashing eBook #14│Mastering jQuery │ 69

 //Options to be used as defaults
 options: {
 someValue: null
 },

 //Setup widget (eg. element creation, apply theming
 // , bind events etc.)
 _create: function () {

 // _create will automatically run the first time
 // this widget is called. Put the initial widget
 // setup code here, then you can access the
element
 // on which the widget was called via
this.element.
 // The options defined above can be accessed
 // via this.options this.element.addStuff();
 },

 // Destroy an instantiated plugin and clean up
 // modifications the widget has made to the DOM
 destroy: function () {

 // this.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the
 // base widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't
 // worry about
 // calling the base widget
 },

 methodB: function (event) {
 //_trigger dispatches callbacks the plugin user
 // can subscribe to
 // signature: _trigger("callbackName" ,
[eventObject],
 // [uiObject])

Smashing eBook #14│Mastering jQuery │ 70

 // eg. this._trigger("hover", e /*where e.type ==
 // "mouseenter"*/, { hovered: $(e.target)});
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {
 key: value
 });
 },

 // Respond to any changes the user makes to the
 // option method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue =
doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked
 // from the base widget
 $.Widget.prototype._setOption.apply(this,
arguments);
 // For UI 1.9 the _super method can be used
instead
 // this._super("_setOption", key, value);
 }
 });

})(jQuery, window, document);

Smashing eBook #14│Mastering jQuery │ 71

FURTHER READING

• The jQuery UI Widget Factory

• “Introduction to Stateful Plugins and the Widget Factory,” Doug Neiner

• “Widget Factory” (explained), Scott Gonzalez

• “Understanding jQuery UI Widgets: A Tutorial,” Hacking at 0300

Namespacing And Nested Namespacing
Namespacing your code is a way to avoid collisions with other objects and
variables in the global namespace. They’re important because you want to
safeguard your plugin from breaking in the event that another script on the
page uses the same variable or plugin names as yours. As a good citizen of
the global namespace, you must also do your best not to prevent other
developers’ scripts from executing because of the same issues.

JavaScript doesn’t really have built-in support for namespaces as other
languages do, but it does have objects that can be used to achieve a similar
effect. Employing a top-level object as the name of your namespace, you
can easily check for the existence of another object on the page with the
same name. If such an object does not exist, then we define it; if it does
exist, then we simply extend it with our plugin.

Objects (or, rather, object literals) can be used to create nested
namespaces, such as namespace.subnamespace.pluginName and so
on. But to keep things simple, the namespacing boilerplate below should
give you everything you need to get started with these concepts.

/*!
 * jQuery namespaced 'Starter' plugin boilerplate
 * Author: @dougneiner
 * Further changes: @addyosmani
 * Licensed under the MIT license

Smashing eBook #14│Mastering jQuery │ 72

http://ajpiano.com/widgetfactory/#slide1
http://ajpiano.com/widgetfactory/#slide1
http://msdn.microsoft.com/en-us/scriptjunkie/ff706600
http://msdn.microsoft.com/en-us/scriptjunkie/ff706600
http://wiki.jqueryui.com/w/page/12138135/Widget%20factory
http://wiki.jqueryui.com/w/page/12138135/Widget%20factory
http://bililite.com/blog/understanding-jquery-ui-widgets-a-tutorial/
http://bililite.com/blog/understanding-jquery-ui-widgets-a-tutorial/

 */

;(function ($) {
 if (!$.myNamespace) {
 $.myNamespace = {};
 };

 $.myNamespace.myPluginName = function (el,
myFunctionParam, options) {
 // To avoid scope issues, use 'base' instead of 'this'
 // to reference this class from internal events and
functions.
 var base = this;

 // Access to jQuery and DOM versions of element
 base.$el = $(el);
 base.el = el;

 // Add a reverse reference to the DOM object
 base.$el.data("myNamespace.myPluginName" , base);

 base.init = function () {
 base.myFunctionParam = myFunctionParam;

 base.options = $.extend({},
 $.myNamespace.myPluginName.defaultOptions,
options);

 // Put your initialization code here
 };

 // Sample Function, Uncomment to use
 // base.functionName = function(paramaters){
 //
 // };
 // Run initializer
 base.init();
 };

Smashing eBook #14│Mastering jQuery │ 73

 $.myNamespace.myPluginName.defaultOptions = {
 myDefaultValue: ""
 };

 $.fn.mynamespace_myPluginName = function
 (myFunctionParam, options) {
 return this.each(function () {
 (new $.myNamespace.myPluginName(this,
 myFunctionParam, options));
 });
 };

})(jQuery);

FURTHER READING

• “Namespacing in JavaScript,” Angus Croll

• “Use Your $.fn jQuery Namespace,” Ryan Florence

• “JavaScript Namespacing,” Peter Michaux

• “Modules and namespaces in JavaScript,” Axel Rauschmayer

Custom Events For Pub/Sub (With "e Widget
factory)
You may have used the Observer (Pub/Sub) pattern in the past to develop
asynchronous JavaScript applications. The basic idea here is that elements
will publish event notifications when something interesting occurs in your
application. Other elements then subscribe to or listen for these events and
respond accordingly. This results in the logic for your application being
significantly more decoupled (which is always good).

In jQuery, we have this idea that custom events provide a built-in means to
implement a publish and subscribe system that’s quite similar to the

Smashing eBook #14│Mastering jQuery │ 74

http://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://ryanflorence.com/use-your-fn-jquery-namespace/
http://ryanflorence.com/use-your-fn-jquery-namespace/
http://michaux.ca/articles/javascript-namespacing
http://michaux.ca/articles/javascript-namespacing
http://www.2ality.com/2011/04/modules-and-namespaces-in-javascript.html
http://www.2ality.com/2011/04/modules-and-namespaces-in-javascript.html

Observer pattern. So, bind('eventType') is functionally equivalent to
performing subscribe('eventType'), and trigger('eventType')
is roughly equivalent to publish('eventType').

Some developers might consider the jQuery event system as having too
much overhead to be used as a publish and subscribe system, but it’s been
architected to be both reliable and robust for most use cases. In the
following jQuery UI widget factory template, we’ll implement a basic custom
event-based pub/sub pattern that allows our plugin to subscribe to event
notifications from the rest of our application, which publishes them.

/*!
 * jQuery custom-events plugin boilerplate
 * Author: DevPatch
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

// In this pattern, we use jQuery's custom events to add
// pub/sub (publish/subscribe) capabilities to widgets.
// Each widget would publish certain events and subscribe
// to others. This approach effectively helps to decouple
// the widgets and enables them to function independently.

;(function ($, window, document, undefined) {
 $.widget("ao.eventStatus", {
 options: {

 },

 _create : function() {
 var self = this;

 //self.element.addClass("my-widget");

 //subscribe to 'myEventStart'
 self.element.bind("myEventStart", function(e) {
 console.log("event start");

Smashing eBook #14│Mastering jQuery │ 75

 });

 //subscribe to 'myEventEnd'
 self.element.bind("myEventEnd", function(e) {
 console.log("event end");
 });

 //unsubscribe to 'myEventStart'
 //self.element.unbind("myEventStart", function(e)
{
 ///console.log("unsubscribed to this event");
 //});
 },

 destroy: function(){
 $.Widget.prototype.destroy.apply(this,
arguments);
 },
 });
})(jQuery, window , document);

//Publishing event notifications
//usage:
// $(".my-widget").trigger("myEventStart");
// $(".my-widget").trigger("myEventEnd");

FURTHER READING

• “Communication Between jQuery UI Widgets,” Benjamin Sternthal

• “Understanding the Publish/Subscribe Pattern for Greater JavaScript
Scalability,” Addy Osmani

Smashing eBook #14│Mastering jQuery │ 76

http://www.devpatch.com/2010/03/communication-between-jquery-ui-widgets/
http://www.devpatch.com/2010/03/communication-between-jquery-ui-widgets/
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx

Prototypal Inheritance With "e DOM-To-Object
Bridge Pa#ern
In JavaScript, we don’t have the traditional notion of classes that you would
find in other classical programming languages, but we do have prototypal
inheritance. With prototypal inheritance, an object inherits from another
object. And we can apply this concept to jQuery plugin development.

Alex Sexton and Scott Gonzalez have looked at this topic in detail. In sum,
they found that for organized modular development, clearly separating the
object that defines the logic for a plugin from the plugin-generation process
itself can be beneficial. The benefit is that testing your plugin’s code
becomes easier, and you can also adjust the way things work behind the
scenes without altering the way that any object APIs you’ve implemented
are used.

In Sexton’s previous post on this topic, he implements a bridge that enables
you to attach your general logic to a particular plugin, which we’ve
implemented in the template below. Another advantage of this pattern is
that you don’t have to constantly repeat the same plugin initialization code,
thus ensuring that the concepts behind DRY development are maintained.
Some developers might also find this pattern easier to read than others.

/*!
 * jQuery prototypal inheritance plugin boilerplate
 * Author: Alex Sexton, Scott Gonzalez
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

// myObject - an object representing a concept that you want
// to model (e.g. a car)
var myObject = {
 init: function(options, elem) {

Smashing eBook #14│Mastering jQuery │ 77

http://alexsexton.com/
http://alexsexton.com/
http://scottgonzalez.com/
http://scottgonzalez.com/

 // Mix in the passed-in options with the default options
 this.options = $.extend({}, this.options, options);

 // Save the element reference, both as a jQuery
 // reference and a normal reference
 this.elem = elem;
 this.$elem = $(elem);

 // Build the DOM's initial structure
 this._build();

 // return this so that we can chain and use the bridge
with less code.
 return this;
 },
 options: {
 name: "No name"
 },
 _build: function(){
 //this.$elem.html('<h1>'+this.options.name+'</h1>');
 },
 myMethod: function(msg){
 // You have direct access to the associated and cached
 // jQuery element
 // this.$elem.append('<p>'+msg+'</p>');
 }
};

// Object.create support test, and fallback for browsers
without it
if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {}
 F.prototype = o;
 return new F();
 };
}

Smashing eBook #14│Mastering jQuery │ 78

// Create a plugin based on a defined object
$.plugin = function(name, object) {
 $.fn[name] = function(options) {
 return this.each(function() {
 if (! $.data(this, name)) {
 $.data(this, name, Object.create(object).init(
 options, this));
 }
 });
 };
};

// Usage:
// With myObject, we could now essentially do this:
// $.plugin('myobj', myObject);

// and at this point we could do the following
// $('#elem').myobj({name: "John"});
// var inst = $('#elem').data('myobj');
// inst.myMethod('I am a method');

FURTHER READING

• “Using Inheritance Patterns To Organize Large jQuery Applications,”
Alex Sexton

• “How to Manage Large Applications With jQuery or Whatever” (further
discussion), Alex Sexton

• “Practical Example of the Need for Prototypal Inheritance,” Neeraj Singh

• “Prototypal Inheritance in JavaScript,” Douglas Crockford

Smashing eBook #14│Mastering jQuery │ 79

http://alexsexton.com/?p=51
http://alexsexton.com/?p=51
http://www.slideshare.net/SlexAxton/how-to-manage-large-jquery-apps
http://www.slideshare.net/SlexAxton/how-to-manage-large-jquery-apps
http://blog.bigbinary.com/2010/03/12/pratical-example-of-need-for-prototypal-inheritance.html
http://blog.bigbinary.com/2010/03/12/pratical-example-of-need-for-prototypal-inheritance.html
http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html

jQuery UI Widget Factory Bridge
If you liked the idea of generating plugins based on objects in the last
design pattern, then you might be interested in a method found in the
jQuery UI Widget Factory called $.widget.bridge. This bridge basically
serves as a middle layer between a JavaScript object that is created using
$.widget and jQuery’s API, providing a more built-in solution to achieving
object-based plugin definition. Effectively, we’re able to create stateful
plugins using a custom constructor.

Moreover, $.widget.bridge provides access to a number of other
capabilities, including the following:

• Both public and private methods are handled as one would expect in
classical OOP (i.e. public methods are exposed, while calls to private
methods are not possible);

• Automatic protection against multiple initializations;

• Automatic generation of instances of a passed object, and storage of
them within the selection’s internal $.data cache;

• Options can be altered post-initialization.

For further information on how to use this pattern, look at the comments in
the boilerplate below:

/*!
 * jQuery UI Widget factory "bridge" plugin boilerplate
 * Author: @erichynds
 * Further changes, additional comments: @addyosmani
 * Licensed under the MIT license
 */

// a "widgetName" object constructor

Smashing eBook #14│Mastering jQuery │ 80

// required: this must accept two arguments,
// options: an object of configuration options
// element: the DOM element the instance was created on
var widgetName = function(options, element){
 this.name = "myWidgetName";
 this.options = options;
 this.element = element;
 this._init();
}

// the "widgetName" prototype
widgetName.prototype = {

 // _create will automatically run the first time this
 // widget is called
 _create: function(){
 // creation code
 },

 // required: initialization logic for the plugin goes into
_init
 // This fires when your instance is first created and when
 // attempting to initialize the widget again (by the
bridge)
 // after it has already been initialized.
 _init: function(){
 // init code
 },

 // required: objects to be used with the bridge must
contain an
 // 'option'. Post-initialization, the logic for changing
options
 // goes here.
 option: function(key, value){

 // optional: get/change options post initialization
 // ignore if you don't require them.

Smashing eBook #14│Mastering jQuery │ 81

 // signature: $('#foo').bar({ cool:false });
 if($.isPlainObject(key)){
 this.options = $.extend(true, this.options,
key);

 // signature: $('#foo').option('cool'); - getter
 } else if (key && typeof value === "undefined"){
 return this.options[key];

 // signature: $('#foo').bar('option', 'baz', false);
 } else {
 this.options[key] = value;
 }

 // required: option must return the current instance.
 // When re-initializing an instance on elements,
option
 // is called first and is then chained to the _init
method.
 return this;
 },

 // notice no underscore is used for public methods
 publicFunction: function(){
 console.log('public function');
 },

 // underscores are used for private methods
 _privateFunction: function(){
 console.log('private function');
 }
};

// usage:

// connect the widget obj to jQuery's API under the "foo"
namespace

Smashing eBook #14│Mastering jQuery │ 82

// $.widget.bridge("foo", widgetName);

// create an instance of the widget for use
// var instance = $("#elem").foo({
// baz: true
// });

// your widget instance exists in the elem's data
// instance.data("foo").element; // => #elem element

// bridge allows you to call public methods...
// instance.foo("publicFunction"); // => "public method"

// bridge prevents calls to internal methods
// instance.foo("_privateFunction"); // => #elem element

FURTHER READING

• “Using $.widget.bridge Outside of the Widget Factory,” Eric Hynds

jQuery Mobile Widgets With "e Widget factory
jQuery mobile is a framework that encourages the design of ubiquitous Web
applications that work both on popular mobile devices and platforms and on
the desktop. Rather than writing unique applications for each device or OS,
you simply write the code once and it should ideally run on many of the A-,
B- and C-grade browsers out there at the moment.

The fundamentals behind jQuery mobile can also be applied to plugin and
widget development, as seen in some of the core jQuery mobile widgets
used in the official library suite. What’s interesting here is that even though
there are very small, subtle differences in writing a “mobile”-optimized
widget, if you’re familiar with using the jQuery UI Widget Factory, you should
be able to start writing these right away.

Smashing eBook #14│Mastering jQuery │ 83

http://erichynds.com/jquery/using-jquery-ui-widget-factory-bridge/
http://erichynds.com/jquery/using-jquery-ui-widget-factory-bridge/

The mobile-optimized widget below has a number of interesting differences
than the standard UI widget pattern we saw earlier:

• $.mobile.widget is referenced as an existing widget prototype from
which to inherit. For standard widgets, passing through any such
prototype is unnecessary for basic development, but using this jQuery-
mobile specific widget prototype provides internal access to further
“options” formatting.

• You’ll notice in _create() a guide on how the official jQuery mobile
widgets handle element selection, opting for a role-based approach
that better fits the jQM mark-up. This isn’t at all to say that standard
selection isn’t recommended, only that this approach might make more
sense given the structure of jQM pages.

• Guidelines are also provided in comment form for applying your plugin
methods on pagecreate as well as for selecting the plugin application
via data roles and data attributes.

/*!
 * (jQuery mobile) jQuery UI Widget-factory plugin boilerplate
(for 1.8/9+)
 * Author: @scottjehl
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 //define a widget under a namespace of your choice
 //here 'mobile' has been used in the first parameter
 $.widget("mobile.widgetName", $.mobile.widget, {

 //Options to be used as defaults
 options: {
 foo: true,
 bar: false
 },

Smashing eBook #14│Mastering jQuery │ 84

 _create: function() {
 // _create will automatically run the first time
this
 // widget is called. Put the initial widget set-up
code
 // here, then you can access the element on which
 // the widget was called via this.element
 // The options defined above can be accessed via
 // this.options

 //var m = this.element,
 //p = m.parents(":jqmData(role='page')"),
 //c = p.find(":jqmData(role='content')")
 },

 // Private methods/props start with underscores
 _dosomething: function(){ ... },

 // Public methods like these below can can be called
 // externally:
 // $("#myelem").foo("enable", arguments);

 enable: function() { ... },

 // Destroy an instantiated plugin and clean up
modifications
 // the widget has made to the DOM
 destroy: function () {
 //this.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the
 // base widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't
 // worry about calling the base widget
 },

 methodB: function (event) {

Smashing eBook #14│Mastering jQuery │ 85

 //_trigger dispatches callbacks the plugin user
can
 // subscribe to
 //signature: _trigger("callbackName" ,
[eventObject],
 // [uiObject])
 // eg. this._trigger("hover", e /*where e.type ==
 // "mouseenter"*/, { hovered: $(e.target)});
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {
 key: value
 });
 },

 //Respond to any changes the user makes to the option
method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue =
doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked
from
 // the base widget
 $.Widget.prototype._setOption.apply(this,
arguments);
 // For UI 1.9 the _super method can be used
instead

Smashing eBook #14│Mastering jQuery │ 86

 // this._super("_setOption", key, value);
 }
 });

})(jQuery, window, document);

//usage: $("#myelem").foo(options);

/* Some additional notes - delete this section before using
the boilerplate.

 We can also self-init this widget whenever a new page in
jQuery Mobile is created. jQuery Mobile's "page" plugin
dispatches a "create" event when a jQuery Mobile page (found
via data-role=page attr) is first initialized.

We can listen for that event (called "pagecreate") and run
our plugin automatically whenever a new page is created.

$(document).bind("pagecreate", function (e) {
 // In here, e.target refers to the page that was created
 // (it's the target of the pagecreate event)
 // So, we can simply find elements on this page that match
a
 // selector of our choosing, and call our plugin on them.
 // Here's how we'd call our "foo" plugin on any element
with a
 // data-role attribute of "foo":
 $(e.target).find("[data-role='foo']").foo(options);

 // Or, better yet, let's write the selector accounting for
the configurable
 // data-attribute namespace
 $(e.target).find(":jqmData(role='foo')").foo(options);
});

That's it. Now you can simply reference the script containing
your widget and pagecreate binding in a page running jQuery

Smashing eBook #14│Mastering jQuery │ 87

Mobile site, and it will automatically run like any other jQM
plugin.
 */

RequireJS And "e jQuery UI Widget Factory
RequireJS is a script loader that provides a clean solution for encapsulating
application logic inside manageable modules. It’s able to load modules in
the correct order (through its order plugin); it simplifies the process of
combining scripts via its excellent optimizer; and it provides the means for
defining module dependencies on a per-module basis.

James Burke has written a comprehensive set of tutorials on getting started
with RequireJS. But what if you’re already familiar with it and would like to
wrap your jQuery UI widgets or plugins in a RequireJS-compatible module
wrapper?.

In the boilerplate pattern below, we demonstrate how a compatible widget
can be defined that does the following:

• Allows the definition of widget module dependencies, building on top of
the previous jQuery UI boilerplate presented earlier;

• Demonstrates one approach to passing in HTML template assets for
creating templated widgets with jQuery (in conjunction with the jQuery
tmpl plugin) (View the comments in _create().)

• Includes a quick tip on adjustments that you can make to your widget
module if you wish to later pass it through the RequireJS optimizer

/*!
 * jQuery UI Widget + RequireJS module boilerplate (for
1.8/9+)
 * Authors: @jrburke, @addyosmani
 * Licensed under the MIT license
 */

Smashing eBook #14│Mastering jQuery │ 88

// Note from James:
//
// This assumes you are using the RequireJS+jQuery file, and
// that the following files are all in the same directory:
//
// - require-jquery.js
// - jquery-ui.custom.min.js (custom jQuery UI build with
widget factory)
// - templates/
// - asset.html
// - ao.myWidget.js

// Then you can construct the widget like so:

//ao.myWidget.js file:
define("ao.myWidget", ["jquery", "text!templates/asset.html",
"jquery-ui.custom.min","jquery.tmpl"], function ($, assetHtml)
{

 // define your widget under a namespace of your choice
 // 'ao' is used here as a demonstration
 $.widget("ao.myWidget", {

 // Options to be used as defaults
 options: {},

 // Set up widget (e.g. create element, apply theming,
 // bind events, etc.)
 _create: function () {

 // _create will automatically run the first time
 // this widget is called. Put the initial widget
 // set-up code here, then you can access the
element

Smashing eBook #14│Mastering jQuery │ 89

 // on which the widget was called via
this.element.
 // The options defined above can be accessed via
 // this.options

 //this.element.addStuff();
 //this.element.addStuff();
 //
this.element.tmpl(assetHtml).appendTo(this.content);
 },

 // Destroy an instantiated plugin and clean up
modifications
 // that the widget has made to the DOM
 destroy: function () {
 //t his.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the
base
 // widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't
worry
 // about calling the base widget
 },

 methodB: function (event) {
 // _trigger dispatches callbacks the plugin user
can
 // subscribe to
 //signature: _trigger("callbackName" ,
[eventObject],
 // [uiObject])
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {

Smashing eBook #14│Mastering jQuery │ 90

 key: value
 });
 },

 //Respond to any changes the user makes to the option
method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue =
doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked
from
 // the base widget
 $.Widget.prototype._setOption.apply(this,
arguments);
 // For UI 1.9 the _super method can be used
instead
 //this._super("_setOption", key, value);
 }

 //somewhere assetHtml would be used for templating,
depending
 // on your choice.
 });
});

// If you are going to use the RequireJS optimizer to combine
files
// together, you can leave off the "ao.myWidget" argument to
define:

Smashing eBook #14│Mastering jQuery │ 91

// define(["jquery", "text!templates/asset.html", "jquery-
ui.custom.min"], …

FURTHER READING

• Using RequireJS with jQuery, Rebecca Murphey

• “Fast Modular Code With jQuery and RequireJS,” James Burke

• “jQuery’s Best Friends ,” Alex Sexton

• “Managing Dependencies With RequireJS,” Ruslan Matveev

Globally And Per-Call Overridable Options (Best
Options Pa#ern)
For our next pattern, we’ll look at an optimal approach to configuring
options and defaults for your plugin. The way you’re probably familiar with
defining plugin options is to pass through an object literal of defaults to
$.extend, as demonstrated in our basic plugin boilerplate.

If, however, you’re working with a plugin with many customizable options
that you would like users to be able to override either globally or on a per-
call level, then you can structure things a little differently.

Instead, by referring to an options object defined within the plugin
namespace explicitly (for example, $fn.pluginName.options) and
merging this with any options passed through to the plugin when it is initially
invoked, users have the option of either passing options through during
plugin initialization or overriding options outside of the plugin (as
demonstrated here).

/*!
 * jQuery 'best options' plugin boilerplate
 * Author: @cowboy

Smashing eBook #14│Mastering jQuery │ 92

http://jqfundamentals.com/book/index.html#example-10.5
http://jqfundamentals.com/book/index.html#example-10.5
http://speakerrate.com/talks/2983-fast-modular-code-with-jquery-and-requirejs
http://speakerrate.com/talks/2983-fast-modular-code-with-jquery-and-requirejs
http://jquerysbestfriends.com/#slide1
http://jquerysbestfriends.com/#slide1
http://www.angrycoding.com/2011/09/managing-dependencies-with-requirejs.html
http://www.angrycoding.com/2011/09/managing-dependencies-with-requirejs.html

 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 $.fn.pluginName = function (options) {

 // Here's a best practice for overriding 'defaults'
 // with specified options. Note how, rather than a
 // regular defaults object being passed as the second
 // parameter, we instead refer to
$.fn.pluginName.options
 // explicitly, merging it with the options passed
directly
 // to the plugin. This allows us to override options
both
 // globally and on a per-call level.

 options = $.extend({}, $.fn.pluginName.options,
options);

 return this.each(function () {

 var elem = $(this);

 });
 };

 // Globally overriding options
 // Here are our publicly accessible default plugin options
 // that are available in case the user doesn't pass in all
 // of the values expected. The user is given a default
 // experience but can also override the values as
necessary.
 // eg. $fn.pluginName.key ='otherval';

 $.fn.pluginName.options = {

Smashing eBook #14│Mastering jQuery │ 93

 key: "value",
 myMethod: function (elem, param) {

 }
 };

})(jQuery, window, document);

FURTHER READING

• jQuery Pluginization and the accompanying gist, Ben Alman

A Highly Configurable And Mutable Plugin
Like Alex Sexton’s pattern, the following logic for our plugin isn’t nested in a
jQuery plugin itself. We instead define our plugin’s logic using a constructor
and an object literal defined on its prototype, using jQuery for the actual
instantiation of the plugin object.

Customization is taken to the next level by employing two little tricks, one of
which you’ve seen in previous patterns:

• Options can be overridden both globally and per collection of elements;

• Options can be customized on a per-element level through HTML5 data
attributes (as shown below). This facilitates plugin behavior that can be
applied to a collection of elements but then customized inline without
the need to instantiate each element with a different default value.

You don’t see the latter option in the wild too often, but it can be a
significantly cleaner solution (as long as you don’t mind the inline approach).
If you’re wondering where this could be useful, imagine writing a draggable
plugin for a large set of elements. You could go about customizing their
options like this:

Smashing eBook #14│Mastering jQuery │ 94

http://benalman.com/talks/jquery-pluginization.html
http://benalman.com/talks/jquery-pluginization.html
https://gist.github.com/472783/e8bf47340413129a8abe5fac55c83336efb5d4e1
https://gist.github.com/472783/e8bf47340413129a8abe5fac55c83336efb5d4e1

javascript
$('.item-a').draggable({'defaultPosition':'top-left'});
$('.item-b').draggable({'defaultPosition':'bottom-right'});
$('.item-c').draggable({'defaultPosition':'bottom-left'});
//etc

But using our patterns inline approach, the following would be possible:

javascript
$('.items').draggable();

html
<li class="item" data-plugin-options='{"defaultPosition":"top-
left"}'></div>
<li class="item" data-plugin-
options='{"defaultPosition":"bottom-left"}'></div>

And so on. You may well have a preference for one of these approaches,
but it is another potentially useful pattern to be aware of.

/*
 * 'Highly configurable' mutable plugin boilerplate
 * Author: @markdalgleish
 * Further changes, comments: @addyosmani
 * Licensed under the MIT license
 */

// Note that with this pattern, as per Alex Sexton's, the
plugin logic
// hasn't been nested in a jQuery plugin. Instead, we just use
// jQuery for its instantiation.

;(function($, window, document, undefined){

 // our plugin constructor
 var Plugin = function(elem, options){
 this.elem = elem;
 this.$elem = $(elem);
 this.options = options;

Smashing eBook #14│Mastering jQuery │ 95

 // This next line takes advantage of HTML5 data
attributes
 // to support customization of the plugin on a per-
element
 // basis. For example,
 // <div class=item' data-plugin-
options='{"message":"Goodbye World!"}'></div>
 this.metadata = this.$elem.data('plugin-options');
 };

 // the plugin prototype
 Plugin.prototype = {
 defaults: {
 message: 'Hello world!'
 },

 init: function() {
 // Introduce defaults that can be extended either
 // globally or using an object literal.
 this.config = $.extend({}, this.defaults, this.options,
 this.metadata);

 // Sample usage:
 // Set the message per instance:
 // $('#elem').plugin({ message: 'Goodbye World!'});
 // or
 // var p = new Plugin(document.getElementById('elem'),
 // { message: 'Goodbye World!'}).init()
 // or, set the global default message:
 // Plugin.defaults.message = 'Goodbye World!'

 this.sampleMethod();
 return this;
 },

 sampleMethod: function() {
 // eg. show the currently configured message
 // console.log(this.config.message);

Smashing eBook #14│Mastering jQuery │ 96

 }
 }

 Plugin.defaults = Plugin.prototype.defaults;

 $.fn.plugin = function(options) {
 return this.each(function() {
 new Plugin(this, options).init();
 });
 };

 //optional: window.Plugin = Plugin;

})(jQuery, window , document);

FURTHER READING

• “Creating Highly Configurable jQuery Plugins,” Mark Dalgleish

• “Writing Highly Configurable jQuery Plugins, Part 2,” Mark Dalgleish

AMD- And CommonJS-Compatible Modules
While many of the plugin and widget patterns presented above are
acceptable for general use, they aren’t without their caveats. Some require
jQuery or the jQuery UI Widget Factory to be present in order to function,
while only a few could be easily adapted to work well as globally compatible
modules both client-side and in other environments.

For this reason, a number of developers, including me, CDNjs maintainer
Thomas Davis and RP Florence, have been looking at both the AMD
(Asynchronous Module Definition) and CommonJS module specifications in
the hopes of extending boilerplate plugin patterns to cleanly work with
packages and dependencies. John Hann and Kit Cambridge have also
explored work in this area.

Smashing eBook #14│Mastering jQuery │ 97

http://markdalgleish.com/2011/05/creating-highly-configurable-jquery-plugins/
http://markdalgleish.com/2011/05/creating-highly-configurable-jquery-plugins/
http://markdalgleish.com/2011/09/html5data-creating-highly-configurable-jquery-plugins-part-2/
http://markdalgleish.com/2011/09/html5data-creating-highly-configurable-jquery-plugins-part-2/
http://cdnjs.com/
http://cdnjs.com/
https://github.com/thomasdavis
https://github.com/thomasdavis
https://github.com/rpflorence
https://github.com/rpflorence
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.commonjs.org/wiki/Modules
http://wiki.commonjs.org/wiki/Modules
http://twitter.com/unscriptable
http://twitter.com/unscriptable
https://gist.github.com/1251221
https://gist.github.com/1251221

AMD

The AMD module format (a specification for defining modules where both
the module and dependencies can be asynchronously loaded) has a
number of distinct advantages, including being both asynchronous and
highly flexible by nature, thus removing the tight coupling one commonly
finds between code and module identity. It’s considered a reliable stepping
stone to the module system proposed for ES Harmony.

When working with anonymous modules, the idea of a module’s identity is
DRY, making it trivial to avoid duplication of file names and code. Because
the code is more portable, it can be easily moved to other locations without
needing to alter the code itself. Developers can also run the same code in
multiple environments just by using an AMD optimizer that works with a
CommonJS environment, such as r.js.

With AMD, the two key concepts you need to be aware of are the require
method and the define method, which facilitate module definition and
dependency loading. The define method is used to define named or
unnamed modules based on the specification, using the following signature:

define(module_id /*optional*/, [dependencies], definition
function /*function for instantiating the module or object*/);

As you can tell from the inline comments, the module’s ID is an optional
argument that is typically required only when non-AMD concatenation tools
are being used (it could be useful in other edge cases, too). One of the
benefits of opting not to use module IDs is having the flexibility to move
your module around the file system without needing to change its ID. The
module’s ID is equivalent to folder paths in simple packages and when not
used in packages.

The dependencies argument represents an array of dependencies that are
required by the module you are defining, and the third argument (factory) is

Smashing eBook #14│Mastering jQuery │ 98

http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://wiki.ecmascript.org/doku.php?id=harmony:modules
https://github.com/jrburke/r.js/
https://github.com/jrburke/r.js/

a function that’s executed to instantiate your module. A barebones module
could be defined as follows:

// Note: here, a module ID (myModule) is used for
demonstration
// purposes only

define('myModule', ['foo', 'bar'], function (foo, bar) {
 // return a value that defines the module export
 // (i.e. the functionality we want to expose for
consumption)
 return function () {};
});

// A more useful example, however, might be:
define('myModule', ['math', 'graph'], function (math, graph)
{
 return {
 plot: function(x, y){
 return
graph.drawPie(math.randomGrid(x,y));
 }
 };
});

The require method, on the other hand, is typically used to load code in a
top-level JavaScript file or in a module should you wish to dynamically fetch
dependencies. Here is an example of its usage:

// Here, the 'exports' from the two modules loaded are passed
as
// function arguments to the callback

require(['foo', 'bar'], function (foo, bar) {
 // rest of your code here
});

// And here's an AMD-example that shows dynamically loaded

Smashing eBook #14│Mastering jQuery │ 99

// dependencies

define(function (require) {
 var isReady = false, foobar;

 require(['foo', 'bar'], function (foo, bar) {
 isReady = true;
 foobar = foo() + bar();
 });

 // We can still return a module
 return {
 isReady: isReady,
 foobar: foobar
 };
});

The above are trivial examples of just how useful AMD modules can be, but
they should provide a foundation that helps you understand how they work.
Many big visible applications and companies currently use AMD modules as
a part of their architecture, including IBM and the BBC iPlayer. The
specification has been discussed for well over a year in both the Dojo and
CommonJS communities, so it’s had time to evolve and improve. For more
reasons on why many developers are opting to use AMD modules in their
applications, you may be interested in James Burke’s article “On Inventing
JS Module Formats and Script Loaders.”

Shortly, we’ll look at writing globally compatible modules that work with
AMD and other module formats and environments, something that offers
even more power. Before that, we need to briefly discuss a related module
format, one with a specification by CommonJS.

COMMONJS

In case you’re not familiar with it, CommonJS is a volunteer working group
that designs, prototypes and standardizes JavaScript APIs. To date, it’s

Smashing eBook #14│Mastering jQuery │ 100

http://www.ibm.com/
http://www.ibm.com/
http://www.bbc.co.uk/iplayer/
http://www.bbc.co.uk/iplayer/
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://www.commonjs.org/
http://www.commonjs.org/

attempted to ratify standards for modules and packages. The CommonJS
module proposal specifies a simple API for declaring modules server-side;
but, as John Hann correctly states, there are really only two ways to use
CommonJS modules in the browser: either wrap them or wrap them.

What this means is that we can either have the browser wrap modules
(which can be a slow process) or at build time (which can be fast to execute
in the browser but requires a build step).

Some developers, however, feel that CommonJS is better suited to server-
side development, which is one reason for the current disagreement over
which format should be used as the de facto standard in the pre-Harmony
age moving forward. One argument against CommonJS is that many
CommonJS APIs address server-oriented features that one would simply not
be able to implement at the browser level in JavaScript; for example, io>,
system and js could be considered unimplementable by the nature of
their functionality.

That said, knowing how to structure CommonJS modules is useful so that
we can better appreciate how they fit in when defining modules that might
be used everywhere. Modules that have applications on both the client and
server side include validation, conversion and templating engines. The way
some developers choose which format to use is to opt for CommonJS when
a module can be used in a server-side environment and to opt for AMD
otherwise.

Because AMD modules are capable of using plugins and can define more
granular things such as constructors and functions, this makes sense.
CommonJS modules are able to define objects that are tedious to work with
only if you’re trying to obtain constructors from them.

From a structural perspective, a CommonJS module is a reusable piece of
JavaScript that exports specific objects made available to any dependent
code; there are typically no function wrappers around such modules. Plenty

Smashing eBook #14│Mastering jQuery │ 101

http://www.commonjs.org/specs/modules/1.0/
http://www.commonjs.org/specs/modules/1.0/
http://wiki.commonjs.org/wiki/Packages/1.0
http://wiki.commonjs.org/wiki/Packages/1.0

of great tutorials on implementing CommonJS modules are out there, but at
a high level, the modules basically contain two main parts: a variable named
exports, which contains the objects that a module makes available to
other modules, and a require function, which modules can use to import
the exports of other modules.

// A very basic module named 'foobar'
function foobar(){
 this.foo = function(){
 console.log('Hello foo');
 }

 this.bar = function(){
 console.log('Hello bar');
 }
}

exports.foobar = foobar;

// An application using 'foobar'

// Access the module relative to the path
// where both usage and module files exist
// in the same directory

var foobar = require('./foobar').foobar,
 test = new foobar.foo();

test.bar(); // 'Hello bar'

There are a number of great JavaScript libraries for handling module loading
in AMD and CommonJS formats, but my preference is RequireJS (curl.js is
also quite reliable). Complete tutorials on these tools are beyond the scope
of this article, but I recommend John Hann’s post “curl.js: Yet Another AMD
Loader,” and James Burke’s post “
LABjs and RequireJS: Loading JavaScript Resources the Fun Way.”

Smashing eBook #14│Mastering jQuery │ 102

http://requirejs.org/
http://requirejs.org/
https://github.com/unscriptable/curl
https://github.com/unscriptable/curl
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568

With what we’ve covered so far, wouldn’t it be great if we could define and
load plugin modules compatible with AMD, CommonJS and other standards
that are also compatible with different environments (client-side, server-side
and beyond)? Our work on AMD and UMD (Universal Module Definition)
plugins and widgets is still at a very early stage, but we’re hoping to develop
solutions that can do just that.

One such pattern we’re working on at the moment appears below, which
has the following features:

• A core/base plugin is loaded into a $.core namespace, which can then
be easily extended using plugin extensions via the namespacing
pattern. Plugins loaded via script tags automatically populate a plugin
namespace under core (i.e. $.core.plugin.methodName()).

• The pattern can be quite nice to work with because plugin extensions
can access properties and methods defined in the base or, with a little
tweaking, override default behavior so that it can be extended to do
more.

• A loader isn’t necessarily required at all to make this pattern fully
function.

usage.html

<script type="text/javascript" src="http://code.jquery.com/
jquery-1.6.4.min.js"></script>
<script type="text/javascript" src="pluginCore.js"></script>
<script type="text/javascript" src="pluginExtension.js"></
script>

<script type="text/javascript">

$(function(){

 // Our plugin 'core' is exposed under a core namespace in

Smashing eBook #14│Mastering jQuery │ 103

https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js

 // this example, which we first cache
 var core = $.core;

 // Then use use some of the built-in core functionality to
 // highlight all divs in the page yellow
 core.highlightAll();

 // Access the plugins (extensions) loaded into the
'plugin'
 // namespace of our core module:

 // Set the first div in the page to have a green
background.
 core.plugin.setGreen("div:first");
 // Here we're making use of the core's 'highlight' method
 // under the hood from a plugin loaded in after it

 // Set the last div to the 'errorColor' property defined
in
 // our core module/plugin. If you review the code further
down,
 // you'll see how easy it is to consume properties and
methods
 // between the core and other plugins
 core.plugin.setRed('div:last');
});

</script>

pluginCore.js

// Module/Plugin core
// Note: the wrapper code you see around the module is what
enables
// us to support multiple module formats and specifications by
// mapping the arguments defined to what a specific format
expects

Smashing eBook #14│Mastering jQuery │ 104

// to be present. Our actual module functionality is defined
lower
// down, where a named module and exports are demonstrated.
//
// Note that dependencies can just as easily be declared if
required
// and should work as demonstrated earlier with the AMD module
examples.

(function (name, definition){
 var theModule = definition(),
 // this is considered "safe":
 hasDefine = typeof define === 'function' && define.amd,
 // hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' &&
module.exports;

 if (hasDefine){ // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the global
object (window)
 (this.jQuery || this.ender || this.$ || this)[name] =
theModule;
 }
})('core', function () {
 var module = this;
 module.plugins = [];
 module.highlightColor = "yellow";
 module.errorColor = "red";

 // define the core module here and return the public API

 // This is the highlight method used by the core
highlightAll()
 // method and all of the plugins highlighting elements
different
 // colors

Smashing eBook #14│Mastering jQuery │ 105

 module.highlight = function(el,strColor){
 if(this.jQuery){
 jQuery(el).css('background', strColor);
 }
 }
 return {
 highlightAll:function(){
 module.highlight('div', module.highlightColor);
 }
 };

});

pluginExtension.js

// Extension to module core

(function (name, definition) {
 var theModule = definition(),
 hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' &&
module.exports;

 if (hasDefine) { // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the
global object (window)

 // account for for flat-file/global module extensions
 var obj = null;
 var namespaces = name.split(".");
 var scope = (this.jQuery || this.ender || this.$ ||
this);
 for (var i = 0; i < namespaces.length; i++) {
 var packageName = namespaces[i];

Smashing eBook #14│Mastering jQuery │ 106

 if (obj && i == namespaces.length - 1) {
 obj[packageName] = theModule;
 } else if (typeof scope[packageName] ===
"undefined") {
 scope[packageName] = {};
 }
 obj = scope[packageName];
 }

 }
})('core.plugin', function () {

 // Define your module here and return the public API.
 // This code could be easily adapted with the core to
 // allow for methods that overwrite and extend core
functionality
 // in order to expand the highlight method to do more if
you wish.
 return {
 setGreen: function (el) {
 highlight(el, 'green');
 },
 setRed: function (el) {
 highlight(el, errorColor);
 }
 };

});

While this is beyond the scope of this article, you may have noticed that
different types of require methods were mentioned when we discussed
AMD and CommonJS.

The concern with a similar naming convention is, of course, confusion, and
the community is currently split on the merits of a global require function.
John Hann’s suggestion here is that rather than call it require, which
would probably fail to inform users of the difference between a global and

Smashing eBook #14│Mastering jQuery │ 107

inner require, renaming the global loader method something else might
make more sense (such as the name of the library). For this reason, curl.js
uses curl, and RequireJS uses requirejs.

This is probably a bigger discussion for another day, but I hope this brief
walkthrough of both module types has increased your awareness of these
formats and has encouraged you to further explore and experiment with
them in your apps.

FURTHER READING

• “Using AMD Loaders to Write and Manage Modular JavaScript,” John
Hann

• “Demystifying CommonJS Modules,” Alex Young

• “AMD Module Patterns: Singleton,” John Hann

• Current discussion thread about AMD- and UMD-style modules for
jQuery plugins, GitHub

• “Run-Anywhere JavaScript Modules Boilerplate Code,” Kris Zyp

• “Standards And Proposals for JavaScript Modules And jQuery,” James
Burke

What Makes A Good jQuery Plugin?
At the end of the day, patterns are just one aspect of plugin development.
And before we wrap up, here are my criteria for selecting third-party plugins,
which will hopefully help developers write them.

Quality
Do your best to adhere to best practices with both the JavaScript and
jQuery that you write. Are your solutions optimal? Do they follow the jQuery

Smashing eBook #14│Mastering jQuery │ 108

http://unscriptable.com/code/Using-AMD-loaders/#0
http://unscriptable.com/code/Using-AMD-loaders/#0
http://dailyjs.com/2010/10/18/modules/
http://dailyjs.com/2010/10/18/modules/
http://unscriptable.com/index.php/2011/09/22/amd-module-patterns-singleton/
http://unscriptable.com/index.php/2011/09/22/amd-module-patterns-singleton/
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
http://www.sitepen.com/blog/2010/09/30/run-anywhere-javascript-modules-boilerplate-code/
http://www.sitepen.com/blog/2010/09/30/run-anywhere-javascript-modules-boilerplate-code/
http://tagneto.blogspot.com/2010/12/standards-and-proposals-for-javascript.html
http://tagneto.blogspot.com/2010/12/standards-and-proposals-for-javascript.html
http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://docs.jquery.com/JQuery_Core_Style_Guidelines

core style guidelines? If not, is your code at least relatively clean and
readable?

Compatibility
Which versions of jQuery is your plugin compatible with? Have you tested it
with the latest builds? If the plugin was written before jQuery 1.6, then it
might have issues with attributes, because the way we approach them
changed with that release. New versions of jQuery offer improvements and
opportunities for the jQuery project to improve on what the core library
offers. With this comes occasional breakages (mainly in major releases) as
we move towards a better way of doing things. I’d like to see plugin authors
update their code when necessary or, at a minimum, test their plugins with
new versions to make sure everything works as expected.

Reliability
Your plugin should come with its own set of unit tests. Not only do these
prove your plugin actually works, but they can also improve the design
without breaking it for end users. I consider unit tests essential for any
serious jQuery plugin that is meant for a production environment, and
they’re not that hard to write. For an excellent guide to automated
JavaScript testing with QUnit, you may be interested in “Automating
JavaScript Testing With QUnit,” by Jorn Zaefferer.

Performance
If the plugin needs to perform tasks that require a lot of computing power or
that heavily manipulates the DOM, then you should follow best practices
that minimize this. Use jsPerf.com to test segments of your code so that
you’re aware of how well it performs in different browsers before releasing
the plugin.

Documentation
If you intend for other developers to use your plugin, ensure that it’s well
documented. Document your API. What methods and options does the
plugin support? Does it have any gotchas that users need to be aware of? If

Smashing eBook #14│Mastering jQuery │ 109

http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://bassistance.de/
http://bassistance.de/
http://jsperf.com/
http://jsperf.com/

users cannot figure out how to use your plugin, they’ll likely look for an
alternative. Also, do your best to comment the code. This is by far the best
gift you could give to other developers. If someone feels they can navigate
your code base well enough to fork it or improve it, then you’ve done a
good job.

Likelihood of maintenance
When releasing a plugin, estimate how much time you’ll have to devote to
maintenance and support. We all love to share our plugins with the
community, but you need to set expectations for your ability to answer
questions, address issues and make improvements. This can be done
simply by stating your intentions for maintenance in the README file, and let
users decide whether to make fixes themselves.

CONCLUSION

We’ve explored several time-saving design patterns and best practices that
can be employed to improve your plugin development process. Some are
better suited to certain use cases than others, but I hope that the code
comments that discuss the ins and outs of these variations on popular
plugins and widgets were useful.

Remember, when selecting a pattern, be practical. Don’t use a plugin
pattern just for the sake of it; rather, spend some time understanding the
underlying structure, and establish how well it solves your problem or fits
the component you’re trying to build. Choose the pattern that best suits your
needs.

And that’s it. If there's a particular pattern or approach you prefer taking to
writing plugins which you feel would benefit others (which hasn't been
covered), please feel free to stick it in a gist and share it in the comments
below. I'm sure it would be appreciated.

Smashing eBook #14│Mastering jQuery │ 110

http://gist.github.com/
http://gist.github.com/

jQuery Plugin Checklist: Should You Use
"at jQuery Plug-In?

Jon Raasch

jQuery plug-ins provide an excellent way to save time and streamline
development, allowing programmers to avoid having to build every
component from scratch. But plug-ins are also a wild card that introduce an
element of uncertainty into any code base. A good plug-in saves countless
development hours; a bad plug-in leads to bug fixes that take longer than
actually building the component from scratch.

Fortunately, one usually has a number of different plug-ins to choose from.
But even if you have only one, figure out whether it’s worth using at all. The
last thing you want to do is introduce bad code into your code base.

Do You Need A Plug-In At All?
The first step is to figure out whether you even need a plug-in. If you don’t,
you’ll save yourself both file size and time.

1. WOULD WRITING IT YOURSELF BE BETTER?

If the functionality is simple enough, you could consider writing it yourself.
jQuery plug-ins often come bundled with a wide variety of features, which
might be overkill for your situation. In these cases, writing any simple
functionality by hand often makes more sense. Of course, the benefits have
to be weighed against the amount of work involved.

Smashing eBook #14│Mastering jQuery │ 111

For example, jQuery UI’s accordion is great if you need advanced
functionality, but it might be overkill if you just need panels that open and
close. If you don’t already use jQuery UI elsewhere on your website,
consider instead the native jQuery slideToggle() or animate().

2. Is It Similar to a Plug-In You’re Already Using?

After discovering that a particular plug-in doesn’t handle everything you
need, finding another plug-in to cover loose ends might be tempting. But
including two similar plug-ins in the same app is a sure path to bloated
JavaScript.

Can you find a single plug-in that covers everything you need? If not, can
you extend one of the plug-ins you have to cover everything you need?
Again, in deciding whether to extend a plug-in, weigh the benefits against
the development time involved.

For example, jQuery lightbox is a nice way to enable pop-up photos in a
gallery, and simpleModal is a great way to display modal messages to users.
But why would you use both on the same website? You could easily extend
one to cover both uses. Better yet, find one plug-in that covers everything,
such as Colorbox.

3. DO YOU EVEN NEED JAVASCRIPT?

In some situations, JavaScript isn’t needed at all. CSS pseudo-selectors such
as :hover and CSS3 transitions can cover a variety of dynamic functionality
much faster than a comparable JavaScript solution. Also, many plug-ins
apply only styling; doing this with mark-up and CSS might make more sense.

For example, plug-ins such as jQuery Tooltip are indispensable if you have
dynamic content that requires well-placed tooltips. But if you use tooltips in
only a few select locations, using pure CSS is better (see this example). You
can take static tooltips a step further by animating the effect using a CSS3

Smashing eBook #14│Mastering jQuery │ 112

http://docs.jquery.com/UI/Accordion
http://docs.jquery.com/UI/Accordion
http://leandrovieira.com/projects/jquery/lightbox/
http://leandrovieira.com/projects/jquery/lightbox/
http://www.ericmmartin.com/projects/simplemodal/
http://www.ericmmartin.com/projects/simplemodal/
http://colorpowered.com/colorbox/
http://colorpowered.com/colorbox/
http://net.tutsplus.com/tutorials/html-css-techniques/css-fundametals-css-3-transitions/
http://net.tutsplus.com/tutorials/html-css-techniques/css-fundametals-css-3-transitions/
http://bassistance.de/jquery-plugins/jquery-plugin-tooltip/
http://bassistance.de/jquery-plugins/jquery-plugin-tooltip/
http://sixrevisions.com/css/css-only-tooltips/
http://sixrevisions.com/css/css-only-tooltips/

transition, but bear in mind that the animation will work only in certain
browsers.

Avoid Red Flags
When reviewing any plug-in, a number of warning signs will indicate poor
quality. Here, we’ll look at all aspects of plug-ins, from the JavaScript to the
CSS to the mark-up. We’ll even consider how plug-ins are released. None of
these red flags alone should eliminate any plug-in from consideration. You
get what you pay for, and because you’re probably paying nothing, you
should be willing to cut any one a bit of slack.

If you’re fortunate enough to have more than one option, these warning
signs could help you narrow down your choice. But even if you have only
one option, be prepared to forgo it if you see too many red flags. Save
yourself the headache ahead of time.

4. WEIRD OPTION OR ARGUMENT SYNTAX

After using jQuery for a while, developers get a sense of how most functions
accept arguments. If a plug-in developer uses unusual syntax, it stands to
reason that they don’t have much jQuery or JavaScript experience.

Some plug-ins accept a jQuery object as an argument but don’t allow
chaining from that object; for example, $.myPlugin($('a')); but not
$('a').myPlugin(); This is a big red flag.

A green flag would be a plug-in in this format…

$('.my-selector').myPlugin({
 opt1 : 75,
 opt2 : 'asdf'
});

… that also accepts…

Smashing eBook #14│Mastering jQuery │ 113

$.myPlugin({
 opt1 : 75,
 opt2 : 'asdf'
}, $('.my-selector'));

5. LITTLE TO NO DOCUMENTATION

Without documentation, a plug-in can be very difficult to use, because that is
the first place you look for answers to your questions. Documentation
comes in a variety of formats; proper documentation is best, but well-
commented code can work just as well. If documentation doesn’t exist or is
just a blog post with a quick example, then you might want to consider other
options.

Good documentation shows that the plug-in creator cares about users like
you. It also shows that they have dug into other plug-ins enough to know
the value of good documentation.

6. POOR HISTORY OF SUPPORT

Lack of support indicates that finding help will be difficult when issues arise.
More tellingly, it indicates that the plug-in has not been updated in a while.
One advantage of open-source software is all of the eye-balls that are
debugging and improving it. If the author never speaks to these people, the
plug-in won’t grow.

When was the last time the plug-in you’re considering was updated? When
was the last time a support request was answered? While not all plug-ins
need as robust a support system as the jQuery plug-ins website, be wary of
plug-ins that have never been modified.

A documented history of support, in which the author has responded to
both bug and enhancement requests, is a green flag. A support forum

Smashing eBook #14│Mastering jQuery │ 114

http://plugins.jquery.com/
http://plugins.jquery.com/

further indicates that the plug-in is well supported, if not by the author then
at least by the community.

7. NO MINIFIED VERSION

Though a fairly minor red flag, if the plug-in’s creator doesn’t provide a
minified version along with the source code, then they may not be overly
concerned with performance. Sure, you could minify it yourself, but this red
flag isn’t about wasted time: it’s about the possibility that the plug-in
contains far worse performance issues.

On the other hand, providing a minified, packed and gzipped version in the
download package is an indication that the author cares about JavaScript
performance.

8. STRANGE MARK-UP REQUIREMENTS

If a plug-in requires mark-up, then the mark-up should be of high quality. It
should make semantic sense and be flexible enough for your purposes.
Besides indicating poor front-end skills, strange mark-up makes integration
more difficult. A good plug-in plugs into just about any mark-up you use; a
bad plug-in makes you jump through hoops.

In certain situations, more rigid mark-up is needed, so be prepared to judge
this on a sliding scale. Basically, the more specific the functionality, the more
specific the mark-up needed. Completely flexible mark-up that descends
naturally from any jQuery selector is the easiest to integrate.

9. EXCESSIVE CSS

Many jQuery plug-ins come packaged with CSS, and the quality of the style
sheets is just as important as the JavaScript. An excessive number of styles
is a sure sign of bad CSS. But what constitutes “excessive” depends on the
purpose of the plug-in. Something very display-heavy, such as a lightbox or

Smashing eBook #14│Mastering jQuery │ 115

http://developer.yahoo.net/blog/archives/2007/07/high_performanc_8.html
http://developer.yahoo.net/blog/archives/2007/07/high_performanc_8.html
http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/
http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/
http://blue-anvil.com/archives/guide-to-semantic-mark-up/
http://blue-anvil.com/archives/guide-to-semantic-mark-up/

UI plug-in, will need more CSS than something that drives a simple
animation.

Good CSS styles a plug-in’s content effectively while allowing you to easily
modify the styles to fit your theme.

10. NO ONE ELSE USES IT

With the sheer volume of jQuery users, most decent plug-ins will probably
have something written about them, even if it’s a “50 jQuery [fill in the
blank]” post. Do a simple Google search for the plug-in. If you get very few
results, you might want to consider another option, unless the plug-in is
brand new or you can verifiy that it is written by a professional.

Posts on prominent blogs are great, and posts by prominent jQuery
programmers are even better.

Final Assessment
After you’ve given the plug-in the third degree, the only thing left to do is
plug it in and test how well it performs.

11. PLUG IT IN AND SEE

Probably the best way to test a plug-in is to simply plug it on the
development server and see the results. First, does it break anything? Make
sure to look at JavaScript in the surrounding areas. If the plug-in includes a
style sheet, look for layout and styling errors on any page that applies the
style sheet.

Additionally, how does the plug-in perform? If it runs slowly or the page lags
considerably when loading, it might be important to consider other options.

Smashing eBook #14│Mastering jQuery │ 116

12. BENCHMARKING WITH JSPERF

To take your performance review to the next level, run a benchmark test
using JSPerf. Benchmarking basically runs a set of operations a number of
times, and then returns an average of how long it took to execute. JSPerf
provides an easy way to test how quickly a plug-in runs. This can be a great
way to pick a winner between two seemingly identical plug-ins.

An example of a performance test run in jsPerf.

13. CROSS-BROWSER TESTING

If a plug-in comes with a lot of CSS, make sure to test the styling in all of the
browsers that you want to support. Bear in mind that CSS can be drawn
from external style sheets or from within the JavaScript itself.

Even if the plug-in doesn’t have any styling, check for JavaScript errors
across browsers anyway (at least in the earliest version of IE that you
support). jQuery’s core handles most cross-browser issues, but plug-ins
invariably use some amount of pure JavaScript, which tends to break in
older browsers.

14. UNIT TESTING

Finally, you may want to consider taking cross-browser testing even further
with unit tests. Unit testing provides a simple way to test individual
components of a plug-in in any browser or platform you want to support. If

Smashing eBook #14│Mastering jQuery │ 117

http://jsperf.com/
http://jsperf.com/
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing

the plug-in’s author has included unit tests in their release, you can bet that
all components of the plug-in will work across browsers and platforms.

Unfortunately, very few plug-ins include unit test data, but that doesn’t mean
you can’t perform your own test using the QUnit plug-in.

With minimal set-up, you can test whether the plug-in methods return the
desired results. If any test fails, don’t waste your time with the plug-in. In
most cases, performing your own unit tests is overkill, but QUnit helps you
determine the quality of a plug-in when it really counts. For more information
on how to use QUnit, see this tutorial

An example of a unit test run in QUnit.

Smashing eBook #14│Mastering jQuery │ 118

http://docs.jquery.com/QUnit
http://docs.jquery.com/QUnit
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-test-your-javascript-code-with-qunit/
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-test-your-javascript-code-with-qunit/

Conclusion
When assessing the quality of a jQuery plug-in, look at all levels of the code.
Is the JavaScript optimized and error-free? Is the CSS tuned and effective?
Does the mark-up make semantic sense and have the flexibility you need?
These questions all lead to the most important question: will this plug-in be
easy to use?

jQuery core has been optimized and bug-checked not only by the core team
but by the entire jQuery community. While holding jQuery plug-ins to the
same standard would be unfair, they should stand up to at least some of that
same scrutiny.

Smashing eBook #14│Mastering jQuery │ 119

About the Authors

Addy Osmani
Addy Osmani is a JavaScript blogger & UI Developer for AOL based in
London, England. He is also a member of the jQuery [Bug Triage/Docs/
Front-end] teams where he assists with bugs, documentation and
community updates. Most recently he's been nominated for the .net 'Brilliant
Newcomer' award.

Andy Croxall
Andy Croxall is a Web developer from Wandsworth, London, England. He is
a Javascript specialist and is an active member of the jQuery community,
posting plugins and extensions. He has worked for clients ranging from the
London Stock Exchange to Durex. You can keep up with him and his
projects and creations on his website, mitya.co.uk.

Jon Raasch
Jon Raasch is the author of the book Smashing Webkit. He's a
freelance front-end web developer and UI designer with endless love for
jQuery, CSS3, HTML5 and performance tuning. Follow him
on Twitter or read his blog.

Smashing eBook #14│Mastering jQuery │ 120

http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.mitya.co.uk/
http://www.mitya.co.uk/
http://www.amazon.com/Smashing-WebKit-Magazine-Book/dp/1119999138
http://www.amazon.com/Smashing-WebKit-Magazine-Book/dp/1119999138
http://jonraasch.com/
http://jonraasch.com/
http://twitter.com/jonraasch
http://twitter.com/jonraasch
http://jonraasch.com/blog/
http://jonraasch.com/blog/

Tommy Saylor
Tommy is some sort of designer/developer hybrid. He currently lives in
Dallas, Texas, USA, and works for BubbleLife Media. His goal in life: Be
Creative, Be Happy.

Smashing eBook #14│Mastering jQuery │ 121

http://www.bubblelifemedia.com/
http://www.bubblelifemedia.com/

