

Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany
Version 1. July 2012

ISBN: 978-3-943075-36-6

Cover Design: Ricardo Gimenes
PR & Press: Stephan Poppe
eBook Strategy: Thomas Burkert
Technical Editing: Thomas Burkert

Idea & Concept: Smashing Media GmbH

Smashing eBook #26 | HTML Semantics | 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and

developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing

companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #26 | HTML Semantics | 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook

Probably you are aware that one way to reinforce the meaning of website
information is the use of HTML semantics. This eBook "HTML Semantics"
addresses various topics such as outlining algorithms, the pursuit of
semantic value and the semantic grid system.

Table of Contents

HTML5 Semantics

When One Word Is More Meaningful Than A Thousand

HTML5 And The Document Outlining Algorithm

Our Pointless Pursuit Of Semantic Value

Pursuing Semantic Value

The Semantic Grid System: Page Layout For Tomorrow

About The Authors

Smashing eBook #26 | HTML Semantics | 4

HTML5 Semantics

By Bruce Lawson

Much of the excitement we’ve seen so far about HTML5 has been for the
new APIs: local storage, application cache, Web workers, 2-D drawing and
the like. But let’s not overlook that HTML5 brings us 30 new elements to
mark up documents and applications, boosting the total number of elements
available to us to over 100.

Sexy vet hollow demos aside, even the most JavaScript-astic Web 2.0-

alicious application will likely have textual content that needs to be marked
up sensibly, so let’s look at some of the new elements to make sure that
your next project is as semantic as it is interactive.

To keep this article from turning into a book, we won’t look at each in depth.
Instead, this is a taster menu: you can see what’s available, and there are
links that I've vetted for when you want to learn more.

Along the way, we’ll see that HTML5 semantics are carefully designed to
extend the current capabilities of HTML, while always enabling users of
older browsers to access the content. We'll also see that semantic markup is
not “nice to have,” but is rather a cornerstone of Web development,
because it is what enhances accessibility, search-ability, internationalization
and interoperability.

A human language like English, with its vocabulary of a million words, can’t
express every nuance of thought unambiguously, so with only 100 or so
words that we can use in HTML, there will be situations when it’s not clear-
cut which element to use for which piece of content. In that case, choose
one; be consistent across the site.

Smashing eBook #26 | HTML Semantics | 5

http://www.brucelawson.co.uk/2011/html5-and-hollow-demos/
http://www.brucelawson.co.uk/2011/html5-and-hollow-demos/

Some Presentational Elements Are Gone

Purely presentational elements such as center, font and big are now
obsolete. Their role has been perfectly usurped by Cascading Style Sheets.
Now, this doesn’t mean you have to rush out and recode all of those ancient
pages; HTML5 makes them obsolete for authors, but because HTML5
strives not to break the Web, browsers will still render those cobwebbed
legacy pages.

For the same reason, presentational attributes have been removed from
current elements; for example, align on img, table, background on

body, and bgcolor on table.

The evil frame element is absent in HTML5. Frames caused usability and
accessibility nasties. If you get the urge to use them, use an older DOCTYPE
so that your pages still validate.

Beyond this short overview, see the W3C’s exhaustive list of removed
elements and attributes.

Some Presentational Elements Have Been Redefined
To Be Semantic

Not all presentational elements have been taken out and shot. Some have
undergone an extensive re-education program and emerged with shiny new
semantics. For example, the small element no longer means “use a small
font,” although it will display that way in browser style sheets. Now it
represents side comments, such as small print:

Smashing eBook #26 | HTML Semantics | 6

http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element

Small print typically features disclaimers, caveats, legal restrictions, or
copyrights. Small print is also sometimes used for attribution, or for
satisfying licensing requirements.

Some of the redefinitions feel to me to be a mop-up. While | can get behind
 for drawing attention to product names, keywords and so forth, without
any special emphasis implied, specifying the semantics for marking up ship
names (<i>, if you’re so inclined) feels weirdly precise. But | get seasick, and
your nautical mileage may vary. With similar niche precision:

The u element [now] represents a span of text with an unarticulated,
though explicitly rendered, non-textual annotation, such as labeling the
text as being a proper name in Chinese text (a Chinese proper name
mark), or labeling the text as being misspelt.

You can read more about changed elements and attributes on the W3C

website.

Sexy New Semantics

We all know about video and audio. And canvas is particularly popular at
the moment because it allows for 3-D graphics using webGL, so game

designers can port their products to the Web. Like good ol’ img, these
semantics are embedded content, because they drag in content from
another source — either a file, a data URI or JavaScript.

Unlike img, however, they have opening and closing tags, allowing for
fallbacks. Therefore, browsers that don’t support the new semantics can be
fed some content: an image could be the fallback for a canvas, for example,

Smashing eBook #26 | HTML Semantics | 7

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-u-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-u-element
http://www.w3.org/TR/html5-diff/#changed-elements
http://www.w3.org/TR/html5-diff/#changed-elements
http://dev.opera.com/articles/view/introduction-html5-video/
http://dev.opera.com/articles/view/introduction-html5-video/
http://dev.opera.com/articles/view/an-introduction-to-webgl/
http://dev.opera.com/articles/view/an-introduction-to-webgl/

or a Flash movie could be the fallback for video, a technique called “video
for everybody.”

The source and track elements are empty elements (with no closing tags)
that are children of video or audio. The source element gets past the
codec Tower of Babel that we have. Each element points to a different
source file (WebM, MP4, Ogg Theora), and the browser will play the first one
it knows how to deal with:

<audio controls>
<source src=bieber.ogg type=audio/ogg>
<source src=bieber.mp3 type=audio/mp3>
<!-- fallback content: -->
Download 0gg or MP3 formats.
</audio>

In this example, Opera, Firefox and Chrome will download the Ogg version
of Master Bieber’s latest toe-tappin’ masterpiece, while Safari and IE will
grab the MP3 version. Chrome can play both Ogg and MP3, but browsers
will download the first source file that they understand. The fallback content
between the opening and closing tags is a link to download the content to
the desktop and play it via a separate media player, and it is only shown in
browsers that can’t play native multimedia. For video, you could use an
embedded Flash movie hosted on YouTube:

<video controls>
<source src=best-video-ever.webm type=video/webm>
<source src=best-video-ever.mp4 type=video/mp4>
<!-- fallback content: -->
<iframe width="480" height="360"
src="http://www.youtube.com/embed/xzMUygmagcw?2rel=0"

frameborder="0" allowfullscreen>
</iframe>
</video>

Smashing eBook #26 | HTML Semantics | 8

http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://www.youtube.com/embed/xzMUyqmaqcw?rel=0
http://www.youtube.com/embed/xzMUyqmaqcw?rel=0

This way, users of older browsers, such as |IE 6-8, will see a YouTube movie
(as long as they have the Flash Player), so they will at least be able to see
the video, while users with modern browsers will get the full native-video
experience. Everyone gets the content, then, which is what your website is
there for, after all.

The track element is a newer addition to the HTML5 family and is being
implemented by Opera, Chrome and IE at the moment. It points to a subtitle
file that contains text and timing information. When implemented, it
synchronizes captions with the media file to enable on-demand subititling
and captioning; useful not only for viewers who are hard of hearing, but also
for those who do not speak the language used in the audio or video file.

Semantics For Internationalization

Less woo! than the semantics for multimedia and games are the semantics
for internationalization. It may surprise the cool kids in Silicon Valley to learn
that a worldwide Web of people use languages other than English and even
use different writing systems.

Languages such as Arabic and Hebrew are written right to left, unlike
European languages, which are written left to right. On pages that use only
one writing system, this doesn’t present a problem, but on pages with bi-
directional (“bidi”) writing, browsers have to decide where to put
punctuation, bullets, numbers and the like. Browsers usually do a pretty
good job using the Unicode bidirectional algorithm, but it gets it wrong in
some cases, which can seriously dent the comprehensibility of content.

HTMLS5 gives us a bdi element, which enables authors to override the
Unicode bidirectional algorithm and make their text more comprehensible.
For a further description of the problem and to see how bdi solves it, see

Smashing eBook #26 | HTML Semantics | 9

“HTML5’s New bdi Element” by Richard Ishida, the W3C’s
internationalization activity lead.

Some languages have scripts that are not alphabetic at all, but that express
an idea rather than a sound. Occasionally, an author will have to assist
readers with pronunciation for especially rare or awkward characters, usually
by providing an alternate script in a small font above the relevant character.
In print, this was traditionally done with a very small 5-point font called
“ruby,” and HTML5 gives us three new elements for marking up ruby text:
ruby, rt and rp.

For more information, see “The HTML5 ruby Element in Words of One

Syllable or Less” by Daniel Davis.

Structural Semantics

Most people are aware that HTML5 gives us many new elements to
describe parts of a Web page, such as header, footer, nav, section,
article, aside and so on. These exist because we Web developers

actually wanted such semantics. How did the authors of the HTML5
specification know this? Because in 2005 Google analyzed 1 billion pages to

see what authors were using as class names on divs and other elements.
More recently, in 2008, Opera MAMA analyzed 3 million URLs to see the top

class names and top IDs used in the wild. These analyses revealed that

authors wanted to mark up these areas of the page but had no elements to
do so, other than the humble and generic div, to which they then added
descriptive classes and IDs.

The new semantics were built to degrade gracefully. For example, consider

what the specification has to say about the new figure element:

Smashing eBook #26 | HTML Semantics | 10

http://rishida.net/blog/?p=564
http://rishida.net/blog/?p=564
http://twitter.com/r12a
http://twitter.com/r12a
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://code.google.com/webstats/
http://code.google.com/webstats/
http://dev.opera.com/articles/view/mama-markup-report-part-2/
http://dev.opera.com/articles/view/mama-markup-report-part-2/
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/idlist-url.htm
http://devfiles.myopera.com/articles/572/idlist-url.htm
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#the-figure-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#the-figure-element

The figure element represents some flow content, optionally with a
caption, that is self-contained and is typically referenced as a single unit
from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams,
photos, code listings, etc...

This isn’t a new idea. HTML3 proposed a £ig element (which never made it
into the final HTML 3.2 specification). It looked like this:

<FIG SRC="nicodamus.jpeg">

<CAPTION>Ground dweller: <I>Nicodamus bicolor</I> builds
silk snares</CAPTION>

<P>A small hairy spider.

<CREDIT>J. A. L. Cooke/OSF</CREDIT></P>
</FIG>

There’s a big problem with this. In browsers that do not support £ig (and
none do), the image wouldn’t be displayed because the £ig element would
be completely ignored. The contents of the credit element would be
displayed, because it’s just text. So you’d get a credit with no image on older
browsers.

In HTML5, you would code the same example like so:

<figure>

<figcaption>
<p>Ground dweller: <i>Nicodamus bicolor</i> builds silk
snares.</p>
<p>A small hairy spider.
<small>J. A. L. Cooke/OSF</small></p>
</figcaption>
</figure>

Smashing eBook #26 | HTML Semantics | 11

http://www.w3.org/MarkUp/html3/figures
http://www.w3.org/MarkUp/html3/figures

Unlike the aborted HTML3 syntax, the HTML5 version is backwards-
compatible: a browser that doesn’t “know” about the figure element will
still show the img and the text inside figcaption (as the HTML3 credit
element would similarly display its content). Note that we’re using the
redefined small element, instead of minting a new credit element.
Remember that “Small print is also sometimes used for attribution.”

HTML5 also gives us a new figcaption element. Originally, the
specification’s authors tried to reuse caption, as suggested in HTML3, but
there were legacy problems, because caption had previously only been a
child of table.

One of the design principles on which HTMLS is based is that new features

should degrade gracefully. When they can’t, the language allows for fallback
content. It tries to reuse elements rather than mint new ones — but it’s a

pragmatic language: when minting something new is necessary, it does so.

Interactive Semantics

The structural elements of HTML5 currently don’t do much in visual
browsers, although software that sits on top of browsers (such as screen
readers) are starting to use them (see “HTML5, ARIA Roles, and Screen
Readers in March 2011 and “JAWS, IE and Headings in HTML5.”)

Other elements do have a visual effect. The details element, for example,
is a groovy interactive element that functions as “a disclosure widget from

which the user can obtain additional information or controls.”

Most browsers will implement it as an “expando box”: when the user clicks
on some browser-generated icon (such as a triangle or downwards-pointing
arrow) or the word “Details” (which can be replaced by the author’s own
rubric in a child summary), the element will slide open, revealing its details

Smashing eBook #26 | HTML Semantics | 12

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/#degrade-gracefully
http://www.w3.org/TR/html-design-principles/#degrade-gracefully
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/10/jaws-ie-and-headings-in-html5/
http://www.accessibleculture.org/articles/2011/10/jaws-ie-and-headings-in-html5/
http://html5doctor.com/the-details-and-summary-elements/
http://html5doctor.com/the-details-and-summary-elements/

within. The details could be a full description of an image or graph, a
description of a complex table, advanced options for a search form, or just
about anything else. This is a common need on the Web today, now made
native and obviating the need for custom JavaScript.

Most of us have seen HTML5’s new form semantics. Most of these are

attributes of the input element, thereby ensuring graceful degradation to
<input type=text> in older browsers. New elements include
datalist, output, progress and meter.

Do We Have The Right Semantics?

So, we have many new semantics, but are they the right ones? After all, the
Google research on which they were based was conducted in 2005 — quite
some time ago! Perhaps the semantics are already somewhat behind the
times? Many have noted that they’re document-centric rather than
application-centric. Do we need more application-centered semantics, such
as a login or share element, or some kind of modal element for modal
dialogue boxes?

| don’t know; I'm not an app developer. But at least HTML is a “living
standard,” and so these can be added if strong enough use cases are
presented to the Working Group.

| think most coders would welcome a new way to embed images that
respond to the device’s context. Borrowing from the video element, which
displays source video according to what media queries instruct, | can
imagine a new element such as picture:

Smashing eBook #26 | HTML Semantics | 13

http://dev.opera.com/articles/view/new-form-features-in-html5/
http://dev.opera.com/articles/view/new-form-features-in-html5/
http://adactio.com/journal/4272/
http://adactio.com/journal/4272/
http://html5doctor.com/measure-up-with-the-meter-tag/
http://html5doctor.com/measure-up-with-the-meter-tag/

<picture alt="angry pirate">
<source src=hires.png media="min-width:800px">
<source src=midres.png media="min-width:480px">
<source src=lores.png>
<!-- fallback for browsers without support -->

</picture>

This would pull in hires.png for widescreen devices, midres . png for
devices between 480 and 800 pixels wide, and lores . png for everything
else, thereby rendering moot the question that designers currently ask
themselves, “Do | make every browser download a high-resolution image
and then squash it down for small screens, thus wasting bandwidth, or do |
send a low-resolution image to every browser and scale it up for big
screens, potentially sacrificing quality?”

Taking a leaf from the other popular semantics we’ve seen, there would be
a fallback in the middle — in this case, a conventional img element — so
everyone would get the right content.

Sending the right-sized image to devices without wasting bandwidth is one
of the knottiest problems in cross-device and responsive design at the
moment. Perhaps we’ll see a solution to this in HTML6. At the moment, the
best solutions, which include Matt Wilcox’s Adaptive Images and Filament

Group’s Responsive Images, require JavaScript and tweaks to the server’s
htaccess file. The worst solutions require old-fashioned techniques, such
as browser-sniffing, now rebranded as “device detection” but still the same
old user-agent string-pattern matching, which is hilariously fragile, not future-

proof or scalable, and straight out of the days of “Best viewed in Netscape
Navigator at 800 x 600” badges on websites.

Smashing eBook #26 | HTML Semantics | 14

http://adaptive-images.com/
http://adaptive-images.com/
https://github.com/filamentgroup/Responsive-Images
https://github.com/filamentgroup/Responsive-Images
http://farukat.es/journal/2011/02/499-lest-we-forget-or-how-i-learned-whats-so-bad-about-browser-sniffing
http://farukat.es/journal/2011/02/499-lest-we-forget-or-how-i-learned-whats-so-bad-about-browser-sniffing
http://webaim.org/blog/user-agent-string-history/
http://webaim.org/blog/user-agent-string-history/

WHEN, WHERE, WHO?

A lot of data depends on three pieces of information: when, where and who?

HTML5 has a time element (which has been a bit of a battleground lately).
This enables you to annotate a human-readable date with an unambiguous

machine-readable one. It doesn’t matter what goes between the tags,
because that’s the content for people to read. So, you could use either of
the following:

<time datetime="1982-07-18">The day the woman I love was
born</time>
<time datetime="1982-07-18">Priyanka Chopra’s birthday</time>

Whichever you choose, the machine would still know the date you mean
because of the datetime attribute, formatted as YYYY-MM-DD. If you
wanted to add a time, you could: separate the time from the date with a T,
and then put the time in 24-hour format, terminated by a Z, along with any
time-zone offset. So, 2011-11-13T20:002Z would be 8:00 pm on 13
November 2011 UTC, while 2011-11-13T23:26.083Z-05.00 would be
23:26 pm and 83 milliseconds in the time zone lying 5 hours before UTC. A
Sri Lankan-localised browser could use this information to automatically
convert dates into Buddhist calendar. Search engines could use timestamps
to help evaluate “freshness”.

It's perhaps surprising that, even though geolocation is so prevalent now,

we don’t have a location element that simply takes three attributes: latitude,

longitude and (optionally) altitude. It would be great to be able to write the
following:

<location 1at=51.502064 long=-0.131981>London SW1A 4WW</
location>

SmasmngeBook#26| HTML Semantics | 15

http://www.brucelawson.co.uk/2011/goodbye-html5-time-hello-data/
http://www.brucelawson.co.uk/2011/goodbye-html5-time-hello-data/
http://www.en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.googleblog.blogspot.com/2011/11/giving-you-fresher-more-recent-search.html
http://www.googleblog.blogspot.com/2011/11/giving-you-fresher-more-recent-search.html
http://www.dev.opera.com/articles/view/how-to-use-the-w3c-geolocation-api/
http://www.dev.opera.com/articles/view/how-to-use-the-w3c-geolocation-api/

The browser would then offer to show you a map or give you directions from
the current GPS location or any other location-based service.

(Since | gave the talk that this article is based on, lan Hickson, the HTML5
editor, said that he expects to add a hew <geo> element. If | could choose,

I'd prefer place, so | could wear a T-shirt with the slogan “I've got the time
if you’ve got the place®)

HTML3 had a person element, “used for names of people to allow these to

be extracted automatically by indexing programs,” but it was never
implemented. In HTML4, the cite element could be used to wrap names of

people, but this has been removed in HTML5 — controversially (see “Incite a
Riot” by Jeremy Keith). In HTMLD5, then, we’re left with no way to
unambiguously denote a person. People’s names are, however, a hard
problem to solve. Whereas times and dates have well-known standardized
ISO formats (Y¥YYY-MM-DD and HH:MM: SS .mmm, respectively), and location
is always latitude, longitude and altitude, personal names are harder to
break down into useful parts: there are Russian patronymics, Indonesian

single-word names, multiple family names, and Thai nicknames to consider.
(See Richard Ishida’s excellent article “Personal Names Around the World”

for more information and discussion.)

The new data element, which replaces time, has a value attribute that

passes machine-readable information, but it has no required or implied
format, so there is no way for a browser or search engine to know, for
example, whether 1936-10-19 is a date, a part number or a postal code.

Microdata

HTMLYS, like HTML4, is extensible (but not in the oh-so-dirty eXtensibility way
of XML formats, so loathed by the Working Group). You can use the tried

Smashing eBook #26 | HTML Semantics | 16

http://www.netmagazine.com/news/ian-hickson-responds-over-html5-getting-time-element-back-111552
http://www.netmagazine.com/news/ian-hickson-responds-over-html5-getting-time-element-back-111552
http://www.w3.org/MarkUp/html3/logical.html
http://www.w3.org/MarkUp/html3/logical.html
http://www.w3.org/TR/html401/struct/text.html#h-9.2.1
http://www.w3.org/TR/html401/struct/text.html#h-9.2.1
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.w3.org/International/questions/qa-personal-names
http://www.w3.org/International/questions/qa-personal-names
http://www.html5doctor.com/time-and-data-element/
http://www.html5doctor.com/time-and-data-element/

and tested microformats, which use HTML classes, or the full RDFa
specification, which doesn’t validate in HTML4 or HTML5. Because RDFa
was considered to be too hard for authors to write (Google has conducted
research that finds that authors make 30% more mistakes with RDFa than

with other formats), HTML5 specifies microdata, a mechanism for adding
common semantics via agreed-upon markup patterns. HTML5 Doctor has
more information on HTML5 microdata, and Opera 11.60 supports the
Microdata DOM API.

Like microformats and RDFa, the extra semantics added to the markup make
sense only if you have a cheat sheet that tells you what each piece means.
This means that the data has to point to a vocabulary that tells any crawler
how to interpret the lump of data it finds. For microdata, there is the newly

established Schema.org, which is “a collection of schemas, i.e. HTML tags,
that webmasters can use to mark up their pages in ways recognized by
major search providers.”

Do Semantics Matter Anyway?

Now that more and more markup is generated by JavaScript, some people
are tempted to think that semantics don’t matter. We see various products

marketed as HTML5 which simply make divs fly around the screen with

JavaScript — simple DHTML techniques unchanged from 10 years ago.

I've even seen some Web pages with no markup at all. Some frameworks
emit skeletal HTML with empty body tags and inject all the HTML with script.

If you’re squirting some minified JavaScript down the wire, with no markup
at all, you’re closer to Flash than you are to the Web.

In the same way that 47 minutes is (apparently) too long to to struggle
making a CSS layout, at which point you should just give up and use tables,

Smashing eBook #26 | HTML Semantics | 17

http://www.lists.w3.org/Archives/Public/public-vocabs/2011Oct/0113.html
http://www.lists.w3.org/Archives/Public/public-vocabs/2011Oct/0113.html
http://www.html5doctor.com/tag/microdata/
http://www.html5doctor.com/tag/microdata/
http://www.opera.com/next
http://www.opera.com/next
http://www.dev.opera.com/articles/view/microdata-and-the-microdata-dom-api/
http://www.dev.opera.com/articles/view/microdata-and-the-microdata-dom-api/
http://www.schema.org/
http://www.schema.org/
http://giveupandusetables.com/
http://giveupandusetables.com/

some people suggest that thinking about which element to use is a waste of
time. “There are two types of developers: those who argue about div’'s not
being semantic and those who create epic shit” writes Thomas Fuchs, as if

the two activities were mutually exclusive.

A better argument is that no software cares about or consumes semantics
anyway, so why bother? This isn’t true (work is underway already to map
assistive technologies to new semantics), but even if it were true, it ignores

that this is a chicken-and-egg argument. It assumes that no new search
engine will ever come to the market and be able to use new elements, or
that browsers will never release new versions that can make use of these
semantics, and that developers will write no new extensions — in short, it
assumes that the evolution of the Web is complete.

Semantics do matter. Semantics communicate meaning, and once that is
established, machines can do something meaningful with that data, without
having to develop and use algorithms to guess. A browser extension might
allow a user to jump straight to the nav with a single keystroke. It can do this
because it looks for nav rather than having to employ heuristics to find a
div with an id or class that would suggest it’s being used as navigation
(assuming the author decided to use something sensible like nav,
navigation, sidebar, or menu — and a restaurant site with a div called
“menu” might be a list of foods rather than other pages...ah, the ambiguity of
natural language). A crawler might dynamically assemble articles on a
timeline. There are many more possibilities than my meagre imagination can
dream up.

The Web is based on simple technologies, mashed up together to bring
surprising results — results which have certainly surpassed the inventors’

original intents or expectations. The Web will continue to do so. What makes
the Web so great, so flexible and so powerful is the fact that content is in

Smashing eBook #26 | HTML Semantics | 18

http://twitter.com/#!/thomasfuchs/status/135696080141680641
http://twitter.com/#!/thomasfuchs/status/135696080141680641
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/

open formats that can be parsed and mashed up in new and surprising
ways.

These can happen if the content is marked up for meaning by the author —
and if the language has the right markup elements for authors to use as a
vocabulary. HTML5 extends our vocabulary. We’ll need more words — and
those will come about with HTML6 etc.

If, like me, you believe the Web to be a system that works across browsers,
across operating systems, across devices, across languages, that is View-
sourcable, hackable, mash-uppable, accessible, indexable, reusable, then
we need to ensure that we use the small number of semantic tools at our
disposal properly, and we’ll all benefit.

Smashing eBook #26 | HTML Semantics | 19

When One Word Is More Meaningful
Than A Thousand

By Niels Matthijs

Why doesn’t this article deal with HTML5 or another fancy new language:
anything but plain, clear, tired old semantics. You may even find the subject
boring, being a devoted front-end developer. You don’t need a lecture on
semantics. You’'ve done a good job keeping up with the Web these last 10
years, and you know pretty much all there is to know.

I’m writing about HTML semantics because I've noticed that semantic values
are often handled sloppily and are sometimes neglected, even today. A
huge void remains in semantic consistency and clarity, begging to be filled.
We need better and more consistent naming conventions and smarter ways
to construct HTML templates, to give us more consistent, clearer and
readable HTML code. If that doesn’t sound like paradise, | don’t know what
does.

The Bare Necessities Of Semantics

With all the functional mumbo jumbo hidden away in HTML5, some of us
seem to have forgotten what HTML is really all about. Native video support
is considered way cooler than the new header tags, somewhat
understandably, but from a semantic and structural point of view, these latter
elements present the most valuable improvement.

Semantic importance got a serious boost when accessibility became a big
deal to us Web developers. But its powers go way beyond making our

Smashing eBook #26 | HTML Semantics | 20

content available to those lacking the skills to surf the Web in regular ways.
For one, making content recognizable to all kinds of crawlers (but most
importantly search engines) could greatly improve the results of search
queries on the Web. Rather than wading through trailers, film websites and
product pages, wouldn’t it be much nicer to filter reviews directly and find
out how a certain film has been received? Currently, no trustworthy
mechanism exists to recognize or filter a broad range of content types,
which is a serious loss for the Web as a whole.

my grade
Lost Souls =/5
english title Lost Souls
year 2002
country Japan
» main info
director YAMAKAWA Naoto » agenda
actor YAMAZAKI Yuko
UECHI Yusuke

When looking for reviews, you don’t want to end up on a page with grayed-out
links.

If all of that sounds like a far-off dream, then note that once you’ve
distinguished between all the elements on your website, you will have little

Smashing eBook #26 | HTML Semantics | 21

to no trouble styling or adding functional behavior to the page. The
combination of context and proper semantics ensures a solid structure for all
further front-end work, which is only made stronger by making sure every
element is defined correctly.

The (Very Simple) Basics

Absolutely nothing is complex about semantics, and the basics have been
preached for a long time now. A recap of the bare minimum won’t hurt
anybody, though, so here it goes.

The HTML language has a range of tags with semantic meaning. If none of
the available tags suits your needs, then two generic tags (span and div)
are the HTML equivalents of the word “thing,” which can be used in
combination with one or more classes to add (not necessarily standardized)
semantic value to your elements. It’s the microformats idea without the
actual microformats. Some basic examples:

« Main navigation: nav.main (HTML5) or div.navMain,;
« An article: article (HTMLS) or div.article;

« Article header: article>header (HTML5) or

div.article>div.header

That’s all there is to it, really. Adding semantic value is about choosing the
correct tag(s) and/or applying the correct label(s) to an element. It really
makes you wonder why applying this simple concept consistently to
professionally developed websites has proven to be so difficult, even today.

For those of you who don’t like the microformats ideology, you could also go
all HTML5 and look at the HTML5 Microdata proposition. What follows in this

Smashing eBook #26 | HTML Semantics | 22

http://dev.w3.org/html5/md/
http://dev.w3.org/html5/md/

article reflects both methodologies equally, so the choice is entirely up to
you.

Sampling The Web

To illustrate my point, | took some quick samples from some of today’s
leading websites. By no means do these samples hold any scientific validity,
nor is this a purposeful bash of the websites I've singled out. They are
simply chosen because | believe they best represent their kind. | hope the
data speaks for itself either way.

To grasp the semantic consistency within a website, | tried finding some
common content types. Content types are easy to recognize and even
easier to label. Before | get to the data, though, let’s look at one way we
could label products in a Web store:

Product detail: div.product;

Products added to your basket: .basket 1li.product;

Promo product in a list: .categoryList .product.promo;

« Etc.

Products are everywhere in a Web store, so it seems logical that the product
class would reappear across the pages for every instance of a product on
the website. After all, whether a product is located in a “Related items” list,
added to a basket or shown in full doesn’t really change its semantic nature,
so why change its structure or class name?

Smashing eBook #26 | HTML Semantics | 23

Frequently Bought

Bestsellers

Magazines: $10 or Less
Updated hourly

NATURAL CITY

1. Popular Science (1-year)

i ' won <700 $10.00 ($0.83/issue)

Customers Who Bought

J This item: Avalon DVD
7 Natural City DVD
v Immortal DVD

What Do Customers

NATURAL CITY

749%b0 buy the item
Avalon yeeyiedess (43)
$13.49

4
J Natural City DVD ~ Ji-tae

119% buy

Avalon Yoy (46) v

$13.49 o
yororosr v (23)
$19.49

These are all products, appearing as variants or in different contexts.

For my sample, | picked five content types (story, product, video, person,
blog post) and picked four websites to represent each content type. To
check for semantic consistency, | looked at the labels on a shortlist (a list of
content type instances) and the content type’s detail. The following table
summarizes my findings:

Smashing eBook #26 | HTML Semantics | 24

Type

Story

Story

Story

Story

Product

Product

Product

Product

Video

Video

Video

Video

Person

Person

Person

Person

<
U
Z

Amazon

Apple Store

Play.com

YesAsia

YouTube

Vimeo

Dailymotion

eBaum’s
World

Facebook

Shortlist

div.hpData

div.story

ul.cnn bulletbin 1i

li.ter

div.asinItem

li.product

div.info

div.item

div.video-cell

div.item

div.video

div.mediaitem

div.UIFullListing

div.user

table.people td

div#following list
span.vcard

Detail

table.storycontent

div#article

div.cnn storyarea

div.w649 (?)

div.product-selection

div.dvd

div#productpage

div.video-info

div.video container hd

div.dmco_box

div#videoContentContainer

div.profile top wash and
div.profile bottom wash

div.user

div#profile wrapper.artist

div#profile

SmasmngeBook#26| HTML Semantics | 25

http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.cnn.com/
http://www.cnn.com/
http://www.msn.com/
http://www.msn.com/
http://www.amazon.com/
http://www.amazon.com/
http://store.apple.com/
http://store.apple.com/
http://www.play.com/
http://www.play.com/
http://www.yesasia.com/
http://www.yesasia.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.vimeo.com/
http://www.vimeo.com/
http://www.dailymotion.com/
http://www.dailymotion.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.facebook.com/
http://www.facebook.com/
http://www.last.fm/
http://www.last.fm/
http://www.virb.com/
http://www.virb.com/
http://www.twitter.com/
http://www.twitter.com/

Blog Zeldman

post

Blog A List Apart div.item -orbody.articles
post

Blog Jens Meiert div.item .content .col-1
post

Blog Webaim div#features div.section

post

Apart from last.fm, none of the websites | checked got it right, even though
the content types | chose were very easy to label. Apple and the New York
Times came quite close, but some of the others are miles away from what
you’d expect to find. And that’s just looking at the root tag of the content
type. The structure and classes within are often even worse, bordering on
complete randomness. Another thing to note is that blogs about Web design
seem to score the worst.

Think Components, Not Pages

There is, of course, not one single cause of this problem, nor is the solution
simple. But you can make one important mental shift as a front-end
developer to give your work more semantic consistency. The key is to stop
thinking of a website as a collection of pages and to instead look for
common components.

Front-end developers tend to work the same as designers: start with the
home page, finish that, and then move on to the second wireframe — copy
the reusable components, adapt if needed, and then repeat until all pages
are done. This process requires a lot of copying, adapting and checking

Smashing eBook #26 | HTML Semantics | 26

http://www.zeldman.com/
http://www.zeldman.com/
http://www.alistapart.com/
http://www.alistapart.com/
http://www.meiert.com/
http://www.meiert.com/
http://www.webaim.com/
http://www.webaim.com/

older pages to find reusable elements. It is a true killer of consistency —
invoking spur-of-the-moment labels and destroying semantic consistency.

Because we want consistency, both in structure and semantics, focusing on
a single component at a time is better. When you need to write the HTML
code for a product, check each wireframe for variations within and across
products. Write code that can handle all existing variants. Once that is done,
you will have a consistent and solid model to describe your component that
you can used wherever you want.

Making It All Happen

| know from experience that this mental shift takes some time to get used to,
and the only way to get it working is to throw yourself in and practice. I'll
share some quick pointers to make the whole process a little less daunting.

THINK BEYOND STYLING NEEDS AND PERFORMANCE

.productlList 1li or .products 11
ul li.product

Consider the example above. As Web developers, we’ve been taught that
the first option should be preferred. From a performance and styling
perspective, this is indeed the case. But putting on your semantic hat, you’ll
notice that to recognize the list items in the first example as products, you
need to make a deduction. Singling out all products on a page isn’t as easy
as looking for the product class. Automated systems should also account for
the possibility that a product is defined as a list item inside a parent that
refers to a collection of products. Not such a big deal for the human brain,
but writing a foolproof, fully automated implementation isn’t as easy.

Smashing eBook #26 | HTML Semantics | 27

On top of that, the second option allows for more flexibility because it makes
it possible to drop instances of other content types into the same list without
running into styling hell, while at the same time ensuring semantic integrity.
It wouldn’t be the first time | was asked to merge a news and event shortlist
into one big list just because there wasn’t sufficient content to warrant
separate lists. The second option would give you a smaller headache,
especially if you’re nearing an important deadline.

Bottom line: try to minimize semantic deductions, and keep the code clear
and simple. Pick unique class names for components, and stick with them
throughout the entire project.

DON’T MIX RESPONSIBILITIES

| know that many people like to mix wireframing, HTML and even design into
one organic and homogeneous process. The downside to this is that you
will have a hard time not compromising your work. When you’re designing,
writing HTML and CSS is not priority number one; and once the design is
done, you'’ll find it tough to go back and rework your code to match HTML
and CSS standards.

It’s also refreshing to try to build a website based purely on a set of
wireframes, without the slightest notion of design. It helps you focus on
meaning and makes it easier to spot components that are actually the same
but could differ wildly design-wise. And if you’ve done it right, you’ll find that
during CSS development, you don’t have to adapt the HTML at all, unless
the design calls for major structural changes.

Try to build your HTML templates based on wireframes, and save the design
and CSS for when your static HTML templates are completed.

Smashing eBook #26 | HTML Semantics | 28

AUTOMATE YOUR JOB

Automation is a major key to success. Whether you use existing tools (such
as a CMS) or build your own (as we do), automating the job of building static
templates could help you to define a component once and reuse the code
everywhere that the component is featured in your templates. The process

itself (when done right) ensures semantic consistency and is sure to bring
you new insight when constructing HTML templates.

At my current job, we build such a tool based on components (recurring
HTML code blocks) and schemes (outlines of each template that refer to
these components). Thrown in some simple program logic (1 £ and 1oop
statements, parameters) and allow for proper nesting methods, and you’re
good to go.

SEMANTIC CONSISTENCY ACROSS PROJECTS

Finally, keep a list of components you’ve made over multiple projects. Many
components will be relevant for each new project and will be semantically
identical, meaning that the HTML structure should be identical just as well
(save some wrappers for visual CSS trickery, if you’re into that).

Once you have such a list of components, starting up a new project will be a
lot faster, and you’ll have the added benefit of semantic consistency across
all of your projects.

Banana # Curvy Yellow Fruit

Semantics is all about identifying objects, but it goes beyond simply slapping
a label on every object that comes your way. If you have a blog, and you
randomly throw around classes like article, story, blogpost and news,
then your website will lack semantic consistency, making all your hard work

Smashing eBook #26 | HTML Semantics | 29

amount to very little. Semantics have no point when they are not applied
consistently, even though today’s technology does very little with them —
which, by the way, is no surprise given that locating a simple “product” on
most Web stores is nearly impossible these days.

People looking for bananas might think twice before buying these.

The next time you begin a project, try to view a Web page as a collection of
building blocks. Start by constructing these building blocks first, and worry
about building the pages later. Come up with a single label for an HTML
component, and use it consistently across your website. It won’t make
styling harder, and it won’t affect the way you write JavaScript. Over time,
you can take it further by being semantically consistent over multiple
projects.

If your main job is to develop static HTML templates, try to automate your
work. You'll find that you spend more time writing flexible and solid HTML

Smashing eBook #26 | HTML Semantics | 30

structures and less time copying and adapting code from point A to point B.
It makes your job more interesting and makes the Web a better and more
meaningful place.

Smashing eBook #26 | HTML Semantics | 31

HTML5 And The Document Outlining
Algorithm

By Derek Johnson

By now, we all know that we should be using HTML5 to build websites. The

discussion now is moving on to how to use HTML5 correctly. One important
part of HTMLD5 that is still not widely understood is sectioning content:
section, article, aside and nav. To understand sectioning content, we
need to grasp the document outlining algorithm.

Understanding the document outlining algorithm can be a challenge, but the
rewards are well worth it. No longer will you agonize over whether to use a
section or div element—you will know straight away. Moreover, you will
know why these elements are used, and this knowledge of semantics is the
biggest benefit of learning how the algorithm works.

What Is The Document Outlining Algorithm?

The document outlining algorithm is a mechanism for producing outline
summaries of Web pages based on how they are marked up. Every Web

page has an outline, and checking it is easy using a really simple free online
tool, which we’ll cover shortly.

So, let’s start with a sample outline. Imagine you have built a website for a
horse breeder, and he wants a page to advertise horses that he is selling.
The structure of the page might look something like this:

Smashing eBook #26 | HTML Semantics | 32

http://coding.smashingmagazine.com/2010/12/10/why-we-should-start-using-css3-and-html5-today/
http://coding.smashingmagazine.com/2010/12/10/why-we-should-start-using-css3-and-html5-today/

1. Horses for sale
1. Mares

1. Pink Diva

2. Ring a Rosies

3. Chelsea’s Fancy
2. Stallions

1. Korah’s Fury

2. Sea Pioneer

3. Brown Biscuit

Figure 1: How a page about horses for sale might be structured.

That’s all it is: a nice, clean, easy-to-follow list of headings, displayed in a
hierarchy —much like a table of contents.

To make things even simpler, only two things in your mark-up affect the
outline of a Web page:

« heading content (h1l to h6 and hgroup),

« sectioning content (section, article, aside and nav).

Obviously, the sectioning of content is the new HTML5 way to create
outlines. But before we get into that, let’s go back to HTML 101 and review
how we should all be using headings.

Smashing eBook #26 | HTML Semantics | 33

http://developers.whatwg.org/content-models.html#heading-content-0
http://developers.whatwg.org/content-models.html#heading-content-0
http://developers.whatwg.org/content-models.html#sectioning-content-0
http://developers.whatwg.org/content-models.html#sectioning-content-0

Creating Outlines With Heading Content

To create a structure for the horses page outlined in figure 1, we could use
mark-up like the following:

<div>
<hl>Horses for sale</hl>
<h2>Mares</h2>

<h3>Pink Diva</h3>
<p>Pink Diva has given birth to three Grand National

winners.</p>

<h3>Ring a Rosies</h3>
<p>Ring a Rosies has won the Derby three times.</p>

<h3>Chelsea’s Fancy</h3>
<p>Chelsea’s Fancy has given birth to three Gold Cup

winners.</p>

<h2>Stallions</h2>
<h3>Korah’s Fury</h3>

<p>Korah’s Fury has fathered three champion race horses.</

P>

<h3>Sea Pioneer</h3>
<p>Sea Pioneer has won The Oaks three times.</p>

<h3>Brown Biscuit</h3>
<p>Brown Biscuit has fathered nothing of any note.</p>

<p>All our horses come with full paperwork and a family
tree.</p>

</div>

Figure 2: Our “Horses for sale” page, marked up using headings.

Smashing eBook #26 | HTML Semantics | 34

It's as simple as that. The outline in figure 1is created by the levels of the
headings.

Just so you know that I’'m not making this up, you should copy and paste the
code above into Geoffrey Sneddon’s excellent outlining tool. Click the big

“Outline this” button, et voila!

An outline created with heading content this way is said to co