

Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version 1: July 2012

ISBN: 978-3-943075-36-6

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Thomas Burkert

Technical Editing: Thomas Burkert

Idea & Concept: Smashing Media GmbH

Smashing eBook #26│HTML Semantics│ 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and
developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing
companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #26│HTML Semantics│ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook
Probably you are aware that one way to reinforce the meaning of website
information is the use of HTML semantics. This eBook "HTML Semantics"
addresses various topics such as outlining algorithms, the pursuit of
semantic value and the semantic grid system.

Table of Contents
HTML5 Semantics

When One Word Is More Meaningful Than A Thousand

HTML5 And The Document Outlining Algorithm

Our Pointless Pursuit Of Semantic Value

Pursuing Semantic Value

The Semantic Grid System: Page Layout For Tomorrow

About The Authors

Smashing eBook #26│HTML Semantics│ 4

HTML5 Semantics
By Bruce Lawson

Much of the excitement we’ve seen so far about HTML5 has been for the
new APIs: local storage, application cache, Web workers, 2-D drawing and
the like. But let’s not overlook that HTML5 brings us 30 new elements to
mark up documents and applications, boosting the total number of elements
available to us to over 100.

Sexy yet hollow demos aside, even the most JavaScript-astic Web 2.0-
alicious application will likely have textual content that needs to be marked
up sensibly, so let’s look at some of the new elements to make sure that
your next project is as semantic as it is interactive.

To keep this article from turning into a book, we won’t look at each in depth.
Instead, this is a taster menu: you can see what’s available, and there are
links that I’ve vetted for when you want to learn more.

Along the way, we’ll see that HTML5 semantics are carefully designed to
extend the current capabilities of HTML, while always enabling users of
older browsers to access the content. We’ll also see that semantic markup is
not “nice to have,” but is rather a cornerstone of Web development,
because it is what enhances accessibility, search-ability, internationalization
and interoperability.

A human language like English, with its vocabulary of a million words, can’t
express every nuance of thought unambiguously, so with only 100 or so
words that we can use in HTML, there will be situations when it’s not clear-
cut which element to use for which piece of content. In that case, choose
one; be consistent across the site.

Smashing eBook #26│HTML Semantics│ 5

http://www.brucelawson.co.uk/2011/html5-and-hollow-demos/
http://www.brucelawson.co.uk/2011/html5-and-hollow-demos/

Some Presentational Elements Are Gone
Purely presentational elements such as center, font and big are now
obsolete. Their role has been perfectly usurped by Cascading Style Sheets.
Now, this doesn’t mean you have to rush out and recode all of those ancient
pages; HTML5 makes them obsolete for authors, but because HTML5
strives not to break the Web, browsers will still render those cobwebbed
legacy pages.

For the same reason, presentational attributes have been removed from
current elements; for example, align on img, table, background on
body, and bgcolor on table.

The evil frame element is absent in HTML5. Frames caused usability and
accessibility nasties. If you get the urge to use them, use an older DOCTYPE
so that your pages still validate.

Beyond this short overview, see the W3C’s exhaustive list of removed
elements and attributes.

Some Presentational Elements Have Been Redefined
To Be Semantic
Not all presentational elements have been taken out and shot. Some have
undergone an extensive re-education program and emerged with shiny new
semantics. For example, the small element no longer means “use a small
font,” although it will display that way in browser style sheets. Now it
represents side comments, such as small print:

Smashing eBook #26│HTML Semantics│ 6

http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.w3.org/TR/html5-diff/#absent-elements
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element

Small print typically features disclaimers, caveats, legal restrictions, or
copyrights. Small print is also sometimes used for attribution, or for
satisfying licensing requirements.

Some of the redefinitions feel to me to be a mop-up. While I can get behind
 for drawing attention to product names, keywords and so forth, without
any special emphasis implied, specifying the semantics for marking up ship
names (<i>, if you’re so inclined) feels weirdly precise. But I get seasick, and
your nautical mileage may vary. With similar niche precision:

The u element [now] represents a span of text with an unarticulated,
though explicitly rendered, non-textual annotation, such as labeling the
text as being a proper name in Chinese text (a Chinese proper name
mark), or labeling the text as being misspelt.

You can read more about changed elements and attributes on the W3C
website.

Sexy New Semantics
We all know about video and audio. And canvas is particularly popular at
the moment because it allows for 3-D graphics using webGL, so game
designers can port their products to the Web. Like good ol’ img, these
semantics are embedded content, because they drag in content from
another source — either a file, a data URI or JavaScript.

Unlike img, however, they have opening and closing tags, allowing for
fallbacks. Therefore, browsers that don’t support the new semantics can be
fed some content: an image could be the fallback for a canvas, for example,

Smashing eBook #26│HTML Semantics│ 7

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-u-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-u-element
http://www.w3.org/TR/html5-diff/#changed-elements
http://www.w3.org/TR/html5-diff/#changed-elements
http://dev.opera.com/articles/view/introduction-html5-video/
http://dev.opera.com/articles/view/introduction-html5-video/
http://dev.opera.com/articles/view/an-introduction-to-webgl/
http://dev.opera.com/articles/view/an-introduction-to-webgl/

or a Flash movie could be the fallback for video, a technique called “video
for everybody.”

The source and track elements are empty elements (with no closing tags)
that are children of video or audio. The source element gets past the
codec Tower of Babel that we have. Each element points to a different
source file (WebM, MP4, Ogg Theora), and the browser will play the first one
it knows how to deal with:

<audio controls>
 <source src=bieber.ogg type=audio/ogg>
 <source src=bieber.mp3 type=audio/mp3>
 <!-- fallback content: -->
 Download Ogg or MP3 formats.
</audio>

In this example, Opera, Firefox and Chrome will download the Ogg version
of Master Bieber’s latest toe-tappin’ masterpiece, while Safari and IE will
grab the MP3 version. Chrome can play both Ogg and MP3, but browsers
will download the first source file that they understand. The fallback content
between the opening and closing tags is a link to download the content to
the desktop and play it via a separate media player, and it is only shown in
browsers that can’t play native multimedia. For video, you could use an
embedded Flash movie hosted on YouTube:

<video controls>
 <source src=best-video-ever.webm type=video/webm>
 <source src=best-video-ever.mp4 type=video/mp4>
 <!-- fallback content: -->
 <iframe width="480" height="360"
 src="http://www.youtube.com/embed/xzMUyqmaqcw?rel=0"
 frameborder="0" allowfullscreen>
 </iframe>
</video>

Smashing eBook #26│HTML Semantics│ 8

http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://www.youtube.com/embed/xzMUyqmaqcw?rel=0
http://www.youtube.com/embed/xzMUyqmaqcw?rel=0

This way, users of older browsers, such as IE 6-8, will see a YouTube movie
(as long as they have the Flash Player), so they will at least be able to see
the video, while users with modern browsers will get the full native-video
experience. Everyone gets the content, then, which is what your website is
there for, after all.

The track element is a newer addition to the HTML5 family and is being
implemented by Opera, Chrome and IE at the moment. It points to a subtitle
file that contains text and timing information. When implemented, it
synchronizes captions with the media file to enable on-demand subtitling
and captioning; useful not only for viewers who are hard of hearing, but also
for those who do not speak the language used in the audio or video file.

Semantics For Internationalization
Less woo! than the semantics for multimedia and games are the semantics
for internationalization. It may surprise the cool kids in Silicon Valley to learn
that a worldwide Web of people use languages other than English and even
use different writing systems.

Languages such as Arabic and Hebrew are written right to left, unlike
European languages, which are written left to right. On pages that use only
one writing system, this doesn’t present a problem, but on pages with bi-
directional (“bidi”) writing, browsers have to decide where to put
punctuation, bullets, numbers and the like. Browsers usually do a pretty
good job using the Unicode bidirectional algorithm, but it gets it wrong in
some cases, which can seriously dent the comprehensibility of content.

HTML5 gives us a bdi element, which enables authors to override the
Unicode bidirectional algorithm and make their text more comprehensible.
For a further description of the problem and to see how bdi solves it, see

Smashing eBook #26│HTML Semantics│ 9

“HTML5’s New bdi Element” by Richard Ishida, the W3C’s
internationalization activity lead.

Some languages have scripts that are not alphabetic at all, but that express
an idea rather than a sound. Occasionally, an author will have to assist
readers with pronunciation for especially rare or awkward characters, usually
by providing an alternate script in a small font above the relevant character.
In print, this was traditionally done with a very small 5-point font called
“ruby,” and HTML5 gives us three new elements for marking up ruby text:
ruby, rt and rp.

For more information, see “The HTML5 ruby Element in Words of One
Syllable or Less” by Daniel Davis.

Structural Semantics
Most people are aware that HTML5 gives us many new elements to
describe parts of a Web page, such as header, footer, nav, section,
article, aside and so on. These exist because we Web developers
actually wanted such semantics. How did the authors of the HTML5
specification know this? Because in 2005 Google analyzed 1 billion pages to
see what authors were using as class names on divs and other elements.
More recently, in 2008, Opera MAMA analyzed 3 million URLs to see the top
class names and top IDs used in the wild. These analyses revealed that
authors wanted to mark up these areas of the page but had no elements to
do so, other than the humble and generic div, to which they then added
descriptive classes and IDs.

The new semantics were built to degrade gracefully. For example, consider
what the specification has to say about the new figure element:

Smashing eBook #26│HTML Semantics│ 10

http://rishida.net/blog/?p=564
http://rishida.net/blog/?p=564
http://twitter.com/r12a
http://twitter.com/r12a
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-element-in-words-of-one-syllable-or-less
http://code.google.com/webstats/
http://code.google.com/webstats/
http://dev.opera.com/articles/view/mama-markup-report-part-2/
http://dev.opera.com/articles/view/mama-markup-report-part-2/
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/classlist-url.htm
http://devfiles.myopera.com/articles/572/idlist-url.htm
http://devfiles.myopera.com/articles/572/idlist-url.htm
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#the-figure-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#the-figure-element

The figure element represents some flow content, optionally with a
caption, that is self-contained and is typically referenced as a single unit
from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams,
photos, code listings, etc…

This isn’t a new idea. HTML3 proposed a fig element (which never made it
into the final HTML 3.2 specification). It looked like this:

<FIG SRC="nicodamus.jpeg">
 <CAPTION>Ground dweller: <I>Nicodamus bicolor</I> builds
silk snares</CAPTION>
 <P>A small hairy spider.
 <CREDIT>J. A. L. Cooke/OSF</CREDIT></P>
</FIG>

There’s a big problem with this. In browsers that do not support fig (and
none do), the image wouldn’t be displayed because the fig element would
be completely ignored. The contents of the credit element would be
displayed, because it’s just text. So you’d get a credit with no image on older
browsers.

In HTML5, you would code the same example like so:

<figure>

 <figcaption>
 <p>Ground dweller: <i>Nicodamus bicolor</i> builds silk
snares.</p>
 <p>A small hairy spider.
 <small>J. A. L. Cooke/OSF</small></p>
 </figcaption>
</figure>

Smashing eBook #26│HTML Semantics│ 11

http://www.w3.org/MarkUp/html3/figures
http://www.w3.org/MarkUp/html3/figures

Unlike the aborted HTML3 syntax, the HTML5 version is backwards-
compatible: a browser that doesn’t “know” about the figure element will
still show the img and the text inside figcaption (as the HTML3 credit
element would similarly display its content). Note that we’re using the
redefined small element, instead of minting a new credit element.
Remember that “Small print is also sometimes used for attribution.”

HTML5 also gives us a new figcaption element. Originally, the
specification’s authors tried to reuse caption, as suggested in HTML3, but
there were legacy problems, because caption had previously only been a
child of table.

One of the design principles on which HTML5 is based is that new features
should degrade gracefully. When they can’t, the language allows for fallback
content. It tries to reuse elements rather than mint new ones — but it’s a
pragmatic language: when minting something new is necessary, it does so.

Interactive Semantics
The structural elements of HTML5 currently don’t do much in visual
browsers, although software that sits on top of browsers (such as screen
readers) are starting to use them (see “HTML5, ARIA Roles, and Screen
Readers in March 2011“ and “JAWS, IE and Headings in HTML5.”)

Other elements do have a visual effect. The details element, for example,
is a groovy interactive element that functions as “a disclosure widget from
which the user can obtain additional information or controls.”

Most browsers will implement it as an “expando box”: when the user clicks
on some browser-generated icon (such as a triangle or downwards-pointing
arrow) or the word “Details” (which can be replaced by the author’s own
rubric in a child summary), the element will slide open, revealing its details

Smashing eBook #26│HTML Semantics│ 12

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-small-element
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/#degrade-gracefully
http://www.w3.org/TR/html-design-principles/#degrade-gracefully
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/10/jaws-ie-and-headings-in-html5/
http://www.accessibleculture.org/articles/2011/10/jaws-ie-and-headings-in-html5/
http://html5doctor.com/the-details-and-summary-elements/
http://html5doctor.com/the-details-and-summary-elements/

within. The details could be a full description of an image or graph, a
description of a complex table, advanced options for a search form, or just
about anything else. This is a common need on the Web today, now made
native and obviating the need for custom JavaScript.

Most of us have seen HTML5’s new form semantics. Most of these are
attributes of the input element, thereby ensuring graceful degradation to
<input type=text> in older browsers. New elements include
datalist, output, progress and meter.

Do We Have !e Right Semantics?
So, we have many new semantics, but are they the right ones? After all, the
Google research on which they were based was conducted in 2005 — quite
some time ago! Perhaps the semantics are already somewhat behind the
times? Many have noted that they’re document-centric rather than
application-centric. Do we need more application-centered semantics, such
as a login or share element, or some kind of modal element for modal
dialogue boxes?

I don’t know; I’m not an app developer. But at least HTML is a “living
standard,” and so these can be added if strong enough use cases are
presented to the Working Group.

I think most coders would welcome a new way to embed images that
respond to the device’s context. Borrowing from the video element, which
displays source video according to what media queries instruct, I can
imagine a new element such as picture:

Smashing eBook #26│HTML Semantics│ 13

http://dev.opera.com/articles/view/new-form-features-in-html5/
http://dev.opera.com/articles/view/new-form-features-in-html5/
http://adactio.com/journal/4272/
http://adactio.com/journal/4272/
http://html5doctor.com/measure-up-with-the-meter-tag/
http://html5doctor.com/measure-up-with-the-meter-tag/

<picture alt="angry pirate">
 <source src=hires.png media="min-width:800px">
 <source src=midres.png media="min-width:480px">
 <source src=lores.png>
 <!-- fallback for browsers without support -->

</picture>

This would pull in hires.png for widescreen devices, midres.png for
devices between 480 and 800 pixels wide, and lores.png for everything
else, thereby rendering moot the question that designers currently ask
themselves, “Do I make every browser download a high-resolution image
and then squash it down for small screens, thus wasting bandwidth, or do I
send a low-resolution image to every browser and scale it up for big
screens, potentially sacrificing quality?”

Taking a leaf from the other popular semantics we’ve seen, there would be
a fallback in the middle — in this case, a conventional img element — so
everyone would get the right content.

Sending the right-sized image to devices without wasting bandwidth is one
of the knottiest problems in cross-device and responsive design at the
moment. Perhaps we’ll see a solution to this in HTML6. At the moment, the
best solutions, which include Matt Wilcox’s Adaptive Images and Filament
Group’s Responsive Images, require JavaScript and tweaks to the server’s
htaccess file. The worst solutions require old-fashioned techniques, such
as browser-sniffing, now rebranded as “device detection” but still the same
old user-agent string-pattern matching, which is hilariously fragile, not future-
proof or scalable, and straight out of the days of “Best viewed in Netscape
Navigator at 800 × 600” badges on websites.

Smashing eBook #26│HTML Semantics│ 14

http://adaptive-images.com/
http://adaptive-images.com/
https://github.com/filamentgroup/Responsive-Images
https://github.com/filamentgroup/Responsive-Images
http://farukat.es/journal/2011/02/499-lest-we-forget-or-how-i-learned-whats-so-bad-about-browser-sniffing
http://farukat.es/journal/2011/02/499-lest-we-forget-or-how-i-learned-whats-so-bad-about-browser-sniffing
http://webaim.org/blog/user-agent-string-history/
http://webaim.org/blog/user-agent-string-history/

WHEN, WHERE, WHO?

A lot of data depends on three pieces of information: when, where and who?

HTML5 has a time element (which has been a bit of a battleground lately).
This enables you to annotate a human-readable date with an unambiguous
machine-readable one. It doesn’t matter what goes between the tags,
because that’s the content for people to read. So, you could use either of
the following:

<time datetime="1982-07-18">The day the woman I love was
born</time>
<time datetime="1982-07-18">Priyanka Chopra’s birthday</time>

Whichever you choose, the machine would still know the date you mean
because of the datetime attribute, formatted as YYYY-MM-DD. If you
wanted to add a time, you could: separate the time from the date with a T,
and then put the time in 24-hour format, terminated by a Z, along with any
time-zone offset. So, 2011-11-13T20:00Z would be 8:00 pm on 13
November 2011 UTC, while 2011-11-13T23:26.083Z-05.00 would be
23:26 pm and 83 milliseconds in the time zone lying 5 hours before UTC. A
Sri Lankan-localised browser could use this information to automatically
convert dates into Buddhist calendar. Search engines could use timestamps
to help evaluate “freshness”.

It’s perhaps surprising that, even though geolocation is so prevalent now,
we don’t have a location element that simply takes three attributes: latitude,
longitude and (optionally) altitude. It would be great to be able to write the
following:

<location lat=51.502064 long=-0.131981>London SW1A 4WW</
location>

Smashing eBook #26│HTML Semantics│ 15

http://www.brucelawson.co.uk/2011/goodbye-html5-time-hello-data/
http://www.brucelawson.co.uk/2011/goodbye-html5-time-hello-data/
http://www.en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.googleblog.blogspot.com/2011/11/giving-you-fresher-more-recent-search.html
http://www.googleblog.blogspot.com/2011/11/giving-you-fresher-more-recent-search.html
http://www.dev.opera.com/articles/view/how-to-use-the-w3c-geolocation-api/
http://www.dev.opera.com/articles/view/how-to-use-the-w3c-geolocation-api/

The browser would then offer to show you a map or give you directions from
the current GPS location or any other location-based service.

(Since I gave the talk that this article is based on, Ian Hickson, the HTML5
editor, said that he expects to add a new <geo> element. If I could choose,
I’d prefer place, so I could wear a T-shirt with the slogan “I’ve got the time
if you’ve got the place“.)

HTML3 had a person element, “used for names of people to allow these to
be extracted automatically by indexing programs,” but it was never
implemented. In HTML4, the cite element could be used to wrap names of
people, but this has been removed in HTML5 — controversially (see “Incite a
Riot” by Jeremy Keith). In HTML5, then, we’re left with no way to
unambiguously denote a person. People’s names are, however, a hard
problem to solve. Whereas times and dates have well-known standardized
ISO formats (YYYY-MM-DD and HH:MM:SS.mmm, respectively), and location
is always latitude, longitude and altitude, personal names are harder to
break down into useful parts: there are Russian patronymics, Indonesian
single-word names, multiple family names, and Thai nicknames to consider.
(See Richard Ishida’s excellent article “Personal Names Around the World”
for more information and discussion.)

The new data element, which replaces time, has a value attribute that
passes machine-readable information, but it has no required or implied
format, so there is no way for a browser or search engine to know, for
example, whether 1936-10-19 is a date, a part number or a postal code.

Microdata
HTML5, like HTML4, is extensible (but not in the oh-so-dirty eXtensibility way
of XML formats, so loathed by the Working Group). You can use the tried

Smashing eBook #26│HTML Semantics│ 16

http://www.netmagazine.com/news/ian-hickson-responds-over-html5-getting-time-element-back-111552
http://www.netmagazine.com/news/ian-hickson-responds-over-html5-getting-time-element-back-111552
http://www.w3.org/MarkUp/html3/logical.html
http://www.w3.org/MarkUp/html3/logical.html
http://www.w3.org/TR/html401/struct/text.html#h-9.2.1
http://www.w3.org/TR/html401/struct/text.html#h-9.2.1
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.24ways.org/2009/incite-a-riot
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.en.wikipedia.org/wiki/Indonesian_names#Example_1:_Single_word_name
http://www.w3.org/International/questions/qa-personal-names
http://www.w3.org/International/questions/qa-personal-names
http://www.html5doctor.com/time-and-data-element/
http://www.html5doctor.com/time-and-data-element/

and tested microformats, which use HTML classes, or the full RDFa
specification, which doesn’t validate in HTML4 or HTML5. Because RDFa
was considered to be too hard for authors to write (Google has conducted
research that finds that authors make 30% more mistakes with RDFa than
with other formats), HTML5 specifies microdata, a mechanism for adding
common semantics via agreed-upon markup patterns. HTML5 Doctor has
more information on HTML5 microdata, and Opera 11.60 supports the
Microdata DOM API.

Like microformats and RDFa, the extra semantics added to the markup make
sense only if you have a cheat sheet that tells you what each piece means.
This means that the data has to point to a vocabulary that tells any crawler
how to interpret the lump of data it finds. For microdata, there is the newly
established Schema.org, which is “a collection of schemas, i.e. HTML tags,
that webmasters can use to mark up their pages in ways recognized by
major search providers.”

Do Semantics Ma"er Anyway?
Now that more and more markup is generated by JavaScript, some people
are tempted to think that semantics don’t matter. We see various products
marketed as HTML5 which simply make divs fly around the screen with
JavaScript  —  simple DHTML techniques unchanged from 10 years ago.

I’ve even seen some Web pages with no markup at all. Some frameworks
emit skeletal HTML with empty body tags and inject all the HTML with script.
If you’re squirting some minified JavaScript down the wire, with no markup
at all, you’re closer to Flash than you are to the Web.

In the same way that 47 minutes is (apparently) too long to to struggle
making a CSS layout, at which point you should just give up and use tables,

Smashing eBook #26│HTML Semantics│ 17

http://www.lists.w3.org/Archives/Public/public-vocabs/2011Oct/0113.html
http://www.lists.w3.org/Archives/Public/public-vocabs/2011Oct/0113.html
http://www.html5doctor.com/tag/microdata/
http://www.html5doctor.com/tag/microdata/
http://www.opera.com/next
http://www.opera.com/next
http://www.dev.opera.com/articles/view/microdata-and-the-microdata-dom-api/
http://www.dev.opera.com/articles/view/microdata-and-the-microdata-dom-api/
http://www.schema.org/
http://www.schema.org/
http://giveupandusetables.com/
http://giveupandusetables.com/

some people suggest that thinking about which element to use is a waste of
time. “There are two types of developers: those who argue about div’s not
being semantic and those who create epic shit” writes Thomas Fuchs, as if
the two activities were mutually exclusive.

A better argument is that no software cares about or consumes semantics
anyway, so why bother? This isn’t true (work is underway already to map
assistive technologies to new semantics), but even if it were true, it ignores
that this is a chicken-and-egg argument. It assumes that no new search
engine will ever come to the market and be able to use new elements, or
that browsers will never release new versions that can make use of these
semantics, and that developers will write no new extensions  —  in short, it
assumes that the evolution of the Web is complete.

Semantics do matter. Semantics communicate meaning, and once that is
established, machines can do something meaningful with that data, without
having to develop and use algorithms to guess. A browser extension might
allow a user to jump straight to the nav with a single keystroke. It can do this
because it looks for nav rather than having to employ heuristics to find a
div with an id or class that would suggest it’s being used as navigation
(assuming the author decided to use something sensible like nav,
navigation, sidebar, or menu  —  and a restaurant site with a div called
“menu” might be a list of foods rather than other pages…ah, the ambiguity of
natural language). A crawler might dynamically assemble articles on a
timeline. There are many more possibilities than my meagre imagination can
dream up.

The Web is based on simple technologies, mashed up together to bring
surprising results  —  results which have certainly surpassed the inventors’
original intents or expectations. The Web will continue to do so. What makes
the Web so great, so flexible and so powerful is the fact that content is in

Smashing eBook #26│HTML Semantics│ 18

http://twitter.com/#!/thomasfuchs/status/135696080141680641
http://twitter.com/#!/thomasfuchs/status/135696080141680641
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/
http://www.paciellogroup.com/blog/2011/11/html5-semantics-and-accessibility/

open formats that can be parsed and mashed up in new and surprising
ways.

These can happen if the content is marked up for meaning by the author  — 
and if the language has the right markup elements for authors to use as a
vocabulary. HTML5 extends our vocabulary. We’ll need more words  —  and
those will come about with HTML6 etc.

If, like me, you believe the Web to be a system that works across browsers,
across operating systems, across devices, across languages, that is View-
sourcable, hackable, mash-uppable, accessible, indexable, reusable, then
we need to ensure that we use the small number of semantic tools at our
disposal properly, and we’ll all benefit.

Smashing eBook #26│HTML Semantics│ 19

When One Word Is More Meaningful
!an A !ousand
By Niels Matthijs

Why doesn’t this article deal with HTML5 or another fancy new language:
anything but plain, clear, tired old semantics. You may even find the subject
boring, being a devoted front-end developer. You don’t need a lecture on
semantics. You’ve done a good job keeping up with the Web these last 10
years, and you know pretty much all there is to know.

I’m writing about HTML semantics because I’ve noticed that semantic values
are often handled sloppily and are sometimes neglected, even today. A
huge void remains in semantic consistency and clarity, begging to be filled.
We need better and more consistent naming conventions and smarter ways
to construct HTML templates, to give us more consistent, clearer and
readable HTML code. If that doesn’t sound like paradise, I don’t know what
does.

!e Bare Necessities Of Semantics
With all the functional mumbo jumbo hidden away in HTML5, some of us
seem to have forgotten what HTML is really all about. Native video support
is considered way cooler than the new header tags, somewhat
understandably, but from a semantic and structural point of view, these latter
elements present the most valuable improvement.

Semantic importance got a serious boost when accessibility became a big
deal to us Web developers. But its powers go way beyond making our

Smashing eBook #26│HTML Semantics│ 20

content available to those lacking the skills to surf the Web in regular ways.
For one, making content recognizable to all kinds of crawlers (but most
importantly search engines) could greatly improve the results of search
queries on the Web. Rather than wading through trailers, film websites and
product pages, wouldn’t it be much nicer to filter reviews directly and find
out how a certain film has been received? Currently, no trustworthy
mechanism exists to recognize or filter a broad range of content types,
which is a serious loss for the Web as a whole.

When looking for reviews, you don’t want to end up on a page with grayed-out
links.

If all of that sounds like a far-off dream, then note that once you’ve
distinguished between all the elements on your website, you will have little

Smashing eBook #26│HTML Semantics│ 21

to no trouble styling or adding functional behavior to the page. The
combination of context and proper semantics ensures a solid structure for all
further front-end work, which is only made stronger by making sure every
element is defined correctly.

!e (Very Simple) Basics
Absolutely nothing is complex about semantics, and the basics have been
preached for a long time now. A recap of the bare minimum won’t hurt
anybody, though, so here it goes.

The HTML language has a range of tags with semantic meaning. If none of
the available tags suits your needs, then two generic tags (span and div)
are the HTML equivalents of the word “thing,” which can be used in
combination with one or more classes to add (not necessarily standardized)
semantic value to your elements. It’s the microformats idea without the
actual microformats. Some basic examples:

• Main navigation: nav.main (HTML5) or div.navMain;

• An article: article (HTML5) or div.article;

• Article header: article>header (HTML5) or
div.article>div.header

That’s all there is to it, really. Adding semantic value is about choosing the
correct tag(s) and/or applying the correct label(s) to an element. It really
makes you wonder why applying this simple concept consistently to
professionally developed websites has proven to be so difficult, even today.

For those of you who don’t like the microformats ideology, you could also go
all HTML5 and look at the HTML5 Microdata proposition. What follows in this

Smashing eBook #26│HTML Semantics│ 22

http://dev.w3.org/html5/md/
http://dev.w3.org/html5/md/

article reflects both methodologies equally, so the choice is entirely up to
you.

Sampling !e Web
To illustrate my point, I took some quick samples from some of today’s
leading websites. By no means do these samples hold any scientific validity,
nor is this a purposeful bash of the websites I’ve singled out. They are
simply chosen because I believe they best represent their kind. I hope the
data speaks for itself either way.

To grasp the semantic consistency within a website, I tried finding some
common content types. Content types are easy to recognize and even
easier to label. Before I get to the data, though, let’s look at one way we
could label products in a Web store:

• Product detail: div.product;

• Products added to your basket: .basket li.product;

• Promo product in a list: .categoryList .product.promo;

• Etc.

Products are everywhere in a Web store, so it seems logical that the product
class would reappear across the pages for every instance of a product on
the website. After all, whether a product is located in a “Related items” list,
added to a basket or shown in full doesn’t really change its semantic nature,
so why change its structure or class name?

Smashing eBook #26│HTML Semantics│ 23

These are all products, appearing as variants or in different contexts.

For my sample, I picked five content types (story, product, video, person,
blog post) and picked four websites to represent each content type. To
check for semantic consistency, I looked at the labels on a shortlist (a list of
content type instances) and the content type’s detail. The following table
summarizes my findings:

Smashing eBook #26│HTML Semantics│ 24

Type Website Shortlist Detail

Story BBC div.hpData table.storycontent

Story New York
Times

div.story div#article

Story CNN ul.cnn_bulletbin li div.cnn_storyarea

Story MSN li.ter div.w649 (?)

Product Amazon div.asinItem -

Product Apple Store li.product div.product-selection

Product Play.com div.info div.dvd

Product YesAsia div.item div#productpage

Video YouTube div.video-cell div.video-info

Video Vimeo div.item div.video_container_hd

Video Dailymotion div.video div.dmco_box

Video eBaum’s
World

div.mediaitem div#videoContentContainer

Person Facebook div.UIFullListing div.profile_top_wash and
div.profile_bottom_wash

Person Last.fm div.user div.user

Person Virb table.people td div#profile_wrapper.artist

Person Twitter div#following_list
span.vcard

div#profile

Smashing eBook #26│HTML Semantics│ 25

http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.cnn.com/
http://www.cnn.com/
http://www.msn.com/
http://www.msn.com/
http://www.amazon.com/
http://www.amazon.com/
http://store.apple.com/
http://store.apple.com/
http://www.play.com/
http://www.play.com/
http://www.yesasia.com/
http://www.yesasia.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.vimeo.com/
http://www.vimeo.com/
http://www.dailymotion.com/
http://www.dailymotion.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.ebaumsworld.com/
http://www.facebook.com/
http://www.facebook.com/
http://www.last.fm/
http://www.last.fm/
http://www.virb.com/
http://www.virb.com/
http://www.twitter.com/
http://www.twitter.com/

Blog
post

Zeldman - -

Blog
post

A List Apart div.item - or body.articles

Blog
post

Jens Meiert div.item .content .col-1

Blog
post

Webaim div#features div.section

Apart from last.fm, none of the websites I checked got it right, even though
the content types I chose were very easy to label. Apple and the New York
Times came quite close, but some of the others are miles away from what
you’d expect to find. And that’s just looking at the root tag of the content
type. The structure and classes within are often even worse, bordering on
complete randomness. Another thing to note is that blogs about Web design
seem to score the worst.

!ink Components, Not Pages
There is, of course, not one single cause of this problem, nor is the solution
simple. But you can make one important mental shift as a front-end
developer to give your work more semantic consistency. The key is to stop
thinking of a website as a collection of pages and to instead look for
common components.

Front-end developers tend to work the same as designers: start with the
home page, finish that, and then move on to the second wireframe — copy
the reusable components, adapt if needed, and then repeat until all pages
are done. This process requires a lot of copying, adapting and checking

Smashing eBook #26│HTML Semantics│ 26

http://www.zeldman.com/
http://www.zeldman.com/
http://www.alistapart.com/
http://www.alistapart.com/
http://www.meiert.com/
http://www.meiert.com/
http://www.webaim.com/
http://www.webaim.com/

older pages to find reusable elements. It is a true killer of consistency —
invoking spur-of-the-moment labels and destroying semantic consistency.

Because we want consistency, both in structure and semantics, focusing on
a single component at a time is better. When you need to write the HTML
code for a product, check each wireframe for variations within and across
products. Write code that can handle all existing variants. Once that is done,
you will have a consistent and solid model to describe your component that
you can used wherever you want.

Making It All Happen
I know from experience that this mental shift takes some time to get used to,
and the only way to get it working is to throw yourself in and practice. I’ll
share some quick pointers to make the whole process a little less daunting.

THINK BEYOND STYLING NEEDS AND PERFORMANCE

.productList li or .products li
ul li.product

Consider the example above. As Web developers, we’ve been taught that
the first option should be preferred. From a performance and styling
perspective, this is indeed the case. But putting on your semantic hat, you’ll
notice that to recognize the list items in the first example as products, you
need to make a deduction. Singling out all products on a page isn’t as easy
as looking for the product class. Automated systems should also account for
the possibility that a product is defined as a list item inside a parent that
refers to a collection of products. Not such a big deal for the human brain,
but writing a foolproof, fully automated implementation isn’t as easy.

Smashing eBook #26│HTML Semantics│ 27

On top of that, the second option allows for more flexibility because it makes
it possible to drop instances of other content types into the same list without
running into styling hell, while at the same time ensuring semantic integrity.
It wouldn’t be the first time I was asked to merge a news and event shortlist
into one big list just because there wasn’t sufficient content to warrant
separate lists. The second option would give you a smaller headache,
especially if you’re nearing an important deadline.

Bottom line: try to minimize semantic deductions, and keep the code clear
and simple. Pick unique class names for components, and stick with them
throughout the entire project.

DON’T MIX RESPONSIBILITIES

I know that many people like to mix wireframing, HTML and even design into
one organic and homogeneous process. The downside to this is that you
will have a hard time not compromising your work. When you’re designing,
writing HTML and CSS is not priority number one; and once the design is
done, you’ll find it tough to go back and rework your code to match HTML
and CSS standards.

It’s also refreshing to try to build a website based purely on a set of
wireframes, without the slightest notion of design. It helps you focus on
meaning and makes it easier to spot components that are actually the same
but could differ wildly design-wise. And if you’ve done it right, you’ll find that
during CSS development, you don’t have to adapt the HTML at all, unless
the design calls for major structural changes.

Try to build your HTML templates based on wireframes, and save the design
and CSS for when your static HTML templates are completed.

Smashing eBook #26│HTML Semantics│ 28

AUTOMATE YOUR JOB

Automation is a major key to success. Whether you use existing tools (such
as a CMS) or build your own (as we do), automating the job of building static
templates could help you to define a component once and reuse the code
everywhere that the component is featured in your templates. The process
itself (when done right) ensures semantic consistency and is sure to bring
you new insight when constructing HTML templates.

At my current job, we build such a tool based on components (recurring
HTML code blocks) and schemes (outlines of each template that refer to
these components). Thrown in some simple program logic (if and loop
statements, parameters) and allow for proper nesting methods, and you’re
good to go.

SEMANTIC CONSISTENCY ACROSS PROJECTS

Finally, keep a list of components you’ve made over multiple projects. Many
components will be relevant for each new project and will be semantically
identical, meaning that the HTML structure should be identical just as well
(save some wrappers for visual CSS trickery, if you’re into that).

Once you have such a list of components, starting up a new project will be a
lot faster, and you’ll have the added benefit of semantic consistency across
all of your projects.

Banana ≠ Curvy Yellow Fruit
Semantics is all about identifying objects, but it goes beyond simply slapping
a label on every object that comes your way. If you have a blog, and you
randomly throw around classes like article, story, blogpost and news,
then your website will lack semantic consistency, making all your hard work

Smashing eBook #26│HTML Semantics│ 29

amount to very little. Semantics have no point when they are not applied
consistently, even though today’s technology does very little with them —
which, by the way, is no surprise given that locating a simple “product” on
most Web stores is nearly impossible these days.

People looking for bananas might think twice before buying these.

The next time you begin a project, try to view a Web page as a collection of
building blocks. Start by constructing these building blocks first, and worry
about building the pages later. Come up with a single label for an HTML
component, and use it consistently across your website. It won’t make
styling harder, and it won’t affect the way you write JavaScript. Over time,
you can take it further by being semantically consistent over multiple
projects.

If your main job is to develop static HTML templates, try to automate your
work. You’ll find that you spend more time writing flexible and solid HTML

Smashing eBook #26│HTML Semantics│ 30

structures and less time copying and adapting code from point A to point B.
It makes your job more interesting and makes the Web a better and more
meaningful place.

Smashing eBook #26│HTML Semantics│ 31

HTML5 And !e Document Outlining
Algorithm
By Derek Johnson

By now, we all know that we should be using HTML5 to build websites. The
discussion now is moving on to how to use HTML5 correctly. One important
part of HTML5 that is still not widely understood is sectioning content:
section, article, aside and nav. To understand sectioning content, we
need to grasp the document outlining algorithm.

Understanding the document outlining algorithm can be a challenge, but the
rewards are well worth it. No longer will you agonize over whether to use a
section or div element — you will know straight away. Moreover, you will
know why these elements are used, and this knowledge of semantics is the
biggest benefit of learning how the algorithm works.

What Is !e Document Outlining Algorithm?
The document outlining algorithm is a mechanism for producing outline
summaries of Web pages based on how they are marked up. Every Web
page has an outline, and checking it is easy using a really simple free online
tool, which we’ll cover shortly.

So, let’s start with a sample outline. Imagine you have built a website for a
horse breeder, and he wants a page to advertise horses that he is selling.
The structure of the page might look something like this:

Smashing eBook #26│HTML Semantics│ 32

http://coding.smashingmagazine.com/2010/12/10/why-we-should-start-using-css3-and-html5-today/
http://coding.smashingmagazine.com/2010/12/10/why-we-should-start-using-css3-and-html5-today/

1. Horses for sale

1. Mares

1. Pink Diva

2. Ring a Rosies

3. Chelsea’s Fancy

2. Stallions

1. Korah’s Fury

2. Sea Pioneer

3. Brown Biscuit

Figure 1: How a page about horses for sale might be structured.

That’s all it is: a nice, clean, easy-to-follow list of headings, displayed in a
hierarchy — much like a table of contents.

To make things even simpler, only two things in your mark-up affect the
outline of a Web page:

• heading content (h1 to h6 and hgroup),

• sectioning content (section, article, aside and nav).

Obviously, the sectioning of content is the new HTML5 way to create
outlines. But before we get into that, let’s go back to HTML 101 and review
how we should all be using headings.

Smashing eBook #26│HTML Semantics│ 33

http://developers.whatwg.org/content-models.html#heading-content-0
http://developers.whatwg.org/content-models.html#heading-content-0
http://developers.whatwg.org/content-models.html#sectioning-content-0
http://developers.whatwg.org/content-models.html#sectioning-content-0

Creating Outlines With Heading Content
To create a structure for the horses page outlined in figure 1, we could use
mark-up like the following:

<div>
 <h1>Horses for sale</h1>
 <h2>Mares</h2>

 <h3>Pink Diva</h3>
 <p>Pink Diva has given birth to three Grand National
winners.</p>

 <h3>Ring a Rosies</h3>
 <p>Ring a Rosies has won the Derby three times.</p>

 <h3>Chelsea’s Fancy</h3>
 <p>Chelsea’s Fancy has given birth to three Gold Cup
winners.</p>

 <h2>Stallions</h2>
 <h3>Korah’s Fury</h3>
 <p>Korah’s Fury has fathered three champion race horses.</
p>

 <h3>Sea Pioneer</h3>
 <p>Sea Pioneer has won The Oaks three times.</p>

 <h3>Brown Biscuit</h3>
 <p>Brown Biscuit has fathered nothing of any note.</p>

 <p>All our horses come with full paperwork and a family
tree.</p>
</div>

Figure 2: Our “Horses for sale” page, marked up using headings.

Smashing eBook #26│HTML Semantics│ 34

It’s as simple as that. The outline in figure 1 is created by the levels of the
headings.

Just so you know that I’m not making this up, you should copy and paste the
code above into Geoffrey Sneddon’s excellent outlining tool. Click the big
“Outline this” button, et voila!

An outline created with heading content this way is said to consist of implicit,
or implied, sections. Each heading creates its own implicit section, and any
subsequent heading of a lower level starts another layer, of implicit sub-
section, within it.

An implicit section is ended by a heading of the same level or higher. In our
example, the “Mares” section is ended by the beginning of the “Stallions”
section, and each section that contains details of an individual horse is
ended by the beginning of the next one.

Figure 3 below is an example of an implicit section that ends with a heading
of the same level. And figure 4 is an implicit section that ends with a heading
of a higher level.

<h3>Sea Pioneer</h3><!-- start of implicit section -->
<p>Sea Pioneer has won The Oaks three times.</p>

<h3>Brown Biscuit</h3><!-- This heading starts a new implicit
section, so the previous Sea Pioneer section is closed -->

Figure 3: An implicit section being closed by a heading of the same level

Smashing eBook #26│HTML Semantics│ 35

http://twitter.com/#!/gsnedders
http://twitter.com/#!/gsnedders
http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/

<h3>Chelsea’s Fancy</h3><!-- start of implicit section -->
<p>Chelsea’s Fancy has given birth to 3 Gold Cup winners.</p>

<h2>Stallions</h2><!-- this heading starts a new implicit
section using a higher level heading, so Chelsea’s Fancy is
now closed -->

Figure 4: An implicit section being closed by a heading of a higher level.

Creating Outlines With Sectioning Content
Now that we know how heading content works in creating an outline, let’s
mark up our horses page using some new HTML5 structural elements:

<div>
 <h6>Horses for sale</h6>

 <section>
 <h1>Mares</h1>

 <article>
 <h1>Pink Diva</h1>
 <p>Pink Diva has given birth to three Grand National
winners.</p>
 </article>

 <article>
 <h5>Ring a Rosies</h5>
 <p>Ring a Rosies has won the Derby three times.</p>
 </article>

 <article>
 <h2>Chelsea’s Fancy</h2>
 <p>Chelsea’s Fancy has given birth to three Gold Cup
winners.</p>

Smashing eBook #26│HTML Semantics│ 36

 </article>
 </section>

 <section>
 <h6>Stallions</h6>

 <article>
 <h3>Korah’s Fury</h3>
 <p>Korah’s Fury has fathered three champion race
horses.</p>
 </article>

 <article>
 <h3>Sea Pioneer</h3>
 <p>Sea Pioneer has won The Oaks three times.</p>
 </article>

 <article>
 <h1>Brown Biscuit</h1>
 <p>Brown Biscuit has fathered nothing of any note.</
p>
 </article>
 </section>

 <p>All our horses come with full paperwork and a family
tree.</p>
</div>

Figure 5: The horses page, marked up with some new HTML5 structural
elements.

Now, I know what you’re thinking, but I haven’t taken leave of my senses
with these crazy headings. I am making a very important point, which is that
the outline is created by the sectioning content, not the headings.

Smashing eBook #26│HTML Semantics│ 37

Go ahead and copy and paste that code into the outliner, and you will see
that the heading levels have absolutely no effect on the outline where
sectioning content is used.

The section, article, aside and nav elements are what create the
outline, and this time the sections are called explicit sections.

One of the most talked about features of HTML5 is that multiple h1
elements are allowed, and this is why. It’s not an open invitation to mark up
every heading on the page as h1; rather, it’s an acknowledgement that
where sectioning content is used, it creates the outline, and that each
explicit section has its own heading structure.

The part of the HTML5 spec that deals with headings and sections makes
this clear:

Sections may contain headings of any rank, but authors are strongly

encouraged to either use only h1 elements, or to use elements of the
appropriate rank for the section’s nesting level.

I would strongly advise that until browsers — and, more critically, screen

readers — understand that sectioning content introduces a sub-section,
using multiple h1 elements is less safe than using a heading structure that
reflects the level of each heading in the document, as shown in figure 6
below.

This means that user agents that haven’t implemented the outlining
algorithm can use implicit sectioning, and those that have implemented it
can effectively ignore the heading levels and use sectioning content to
create the outline.

Smashing eBook #26│HTML Semantics│ 38

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/
http://developers.whatwg.org/sections.html#headings-and-sections
http://developers.whatwg.org/sections.html#headings-and-sections

At the time of this writing, no browsers or screen readers have implemented
the outlining algorithm, which is why we need third-party testing tools such
as the outliner. The latest versions of Chrome and Firefox style h1 elements
in nested sections differently, but that is very different from actually
implementing the algorithm.

When most user agents finally do support it, using an h1 in every explicit
section will be the preferred option. It will allow syndication tools to handle
articles without needing to reformat any heading levels in the original
content.

<div>
 <h1>Horses for sale</h1>

 <section>
 <h2>Mares</h2>

 <article>
 <h3>Pink Diva</h3>
 <p>Pink Diva has given birth to three Grand National
winners.</p>
 </article>

 <article>
 <h3>Ring a Rosies</h3>
 <p>Ring a Rosies has won the Derby three times.</p>
 </article>

 <article>
 <h3>Chelsea’s Fancy</h3>
 <p>Chelsea’s Fancy has given birth to three Gold Cup
winners.</p>
 </article>
 </section>

Smashing eBook #26│HTML Semantics│ 39

 <section>
 <h2>Stallions</h2>

 <article>
 <h3>Korah’s Fury</h3>
 <p>Korah’s Fury has fathered three champion race
horses.</p>
 </article>

 <article>
 <h3>Sea Pioneer</h3>
 <p>Sea Pioneer has won The Oaks three times.</p>
 </article>

 <article>
 <h3>Brown Biscuit</h3>
 <p>Brown Biscuit has fathered nothing of any note.</
p>
 </article>
 </section>

 <p>All our horses come with full paperwork and a family
tree.</p>
</div>

Figure 6: Our horses page, marked up sensibly.

One other point worth noting here is the position of the paragraph “All our
horses come with full paperwork and a family tree.” In the example that used
headings to create the outline (figure 2), this paragraph is part of the implicit
section created by the “Brown Biscuit” heading. Human readers will clearly
see that this text applies to the whole document, not just Brown Biscuit.

Sectioning content solves this problem quite easily, moving it back up to the
top level, headed by “Horses for sale.”

Smashing eBook #26│HTML Semantics│ 40

Mixing It Up
So, what happens when implicit sections and explicit sections are
combined? As long as you remember that implicit sections can go inside
explicit sections, but not the other way round, you will be fine. For example,
the following works well and is perfectly valid:

<h1>Horses for sale</h1>

<section>
 <h2>Mares</h2>

 <h3>Pink Diva</h3>
 <p>Pink Diva has given birth to three Grand National
winners.</p>

 <h3>Ring a Rosies</h3>
 <p>Ring a Rosies has won the Derby three times.</p>

 <h3>Chelsea’s Fancy</h3>
 <p>Chelsea’s Fancy has given birth to three Gold Cup
winners.</p>
</section>

Smashing eBook #26│HTML Semantics│ 41

And it creates a sensible hierarchical outline:

1. Horses for sale

1. Mares

1. Pink Diva

2. Ring a Rosies

3. Chelsea’s Fancy

Figure 7: Implicit sections created by headings inside an explicit section.

However, if you hope to achieve the same outline by nesting an explicit
section inside an implicit section, it won’t work. The sectioning element will
simply close the implicit section created by the heading and create a very
different outline, as shown below:

This would produce the following outline:

1. Horses for sale

1. Mares

2. Pink Diva

3. Ring a Rosies

4. Chelsea’s Fancy

Figure 8: Explicit sections can’t go inside implicit sections.

There is no way to make the explicit sections created by the article
elements become sub-sections of the Mare’s implicit section.

Smashing eBook #26│HTML Semantics│ 42

You can use headings to split up the content of sectioning elements, but not
the other way round.

!ings To Watch Out For

UNTITLED SECTIONS

Until now we haven’t really looked at nav and aside, but they work exactly
the same as section and article. If you have secondary content that is
generally related to your website — say, horse-training tips and industry
news — you would mark it up as an aside, which creates an explicit section
in the document outline. Similarly, major navigation would be marked up as
nav, again creating an explicit section.

There is no requirement to use headings for aside and nav, so they can
appear in the outline as untitled sections. Go ahead and try the following
code in the outliner:

<nav>

 home
 about us
 horses for sale

</nav>
<h1>Horses for sale</h1>
<section>
 <h2>Mares</h2>
</section>
<section>
 <h2>Stallions</h2>
</section>

Figure 9: An untitled <nav>.

Smashing eBook #26│HTML Semantics│ 43

The nav appears as an untitled section. Now, this generally wouldn’t be a
problem and is not considered bad HTML5 code, although in his recent
HTML5 Doctor article on outlining, Mike Robinson recommends using
headings for all sectioning content in order to increase accessibility.

Untitled section and article elements, on the other hand, are generally
to be avoided. In fact, if you’re unsure whether to use a section or
article, a good rule of thumb is to see whether the content has a natural,
logical heading. If it doesn’t, then you will more than likely be wiser to use a
good old div.

Now, the spec doesn’t actually require section elements to have a title. It
says:

The section element represents a generic section of a document or
application. A section, in this context, is a thematic grouping of content,
typically with a heading.

Your interpretation of this probably hinges on your understanding of the
word “typically.” I take it to mean that you need a damn good reason not to
use headings with section elements. I do not take it to mean that you can
ignore it whenever you feel the urge to use a new HTML5 element.

Where the article element is specified, the spec goes even further by
showing an example of blog comments marked up as untitled articles, so
there are exceptions. However, if you see an untitled section or article
in the outline, make sure you have a good reason for not giving it a title.

If you are unsure whether your untitled section is a nav, aside, section
or article, a very handy Opera extension will let you know which type of
sectioning content you have left untitled. The tool will also let you view the

Smashing eBook #26│HTML Semantics│ 44

http://html5doctor.com/outlines/
http://html5doctor.com/outlines/
http://html5doctor.com/outlines/
http://html5doctor.com/outlines/
https://twitter.com/#!/akamike
https://twitter.com/#!/akamike
http://developers.whatwg.org/sections.html#the-article-element
http://developers.whatwg.org/sections.html#the-article-element
https://addons.opera.com/addons/extensions/details/html5-outliner/1.0/?display=en
https://addons.opera.com/addons/extensions/details/html5-outliner/1.0/?display=en

outline without leaving the page, which can be hugely beneficial when
you’re debugging sections.

SECTIONING ROOT

The eagle-eyed among you will have noticed that when I said that sectioning
content cannot create a sub-section of an implicit section, there was an h1
(“Horses for sale”) not in sectioning content immediately followed by a
section (“Mares”), and that the sectioning content did actually create a
sub-section of the h1.

The reason for this is sectioning root. As the spec says, sectioning elements
create sub-sections of their nearest ancestor sectioning root or sectioning
content.

Sectioning content elements are always considered subsections of their
nearest ancestor sectioning root or their nearest ancestor element of
sectioning content, whichever is nearest, regardless of what implied
sections other headings may have created.

The body element is sectioning root. So, if you paste the code from figure 7
into the outliner, the h1 would be the sectioning root heading, and the
section element would be a sub-section of the body sectioning root.

The body element is not the only one that acts as sectioning root. There are
five others:

1.blockquote

2.details

3.fieldset

Smashing eBook #26│HTML Semantics│ 45

http://dev.w3.org/html5/spec/Overview.html#sectioning-root
http://dev.w3.org/html5/spec/Overview.html#sectioning-root
http://dev.w3.org/html5/spec/Overview.html#sectioning-content
http://dev.w3.org/html5/spec/Overview.html#sectioning-content
http://dev.w3.org/html5/spec/Overview.html#sectioning-root
http://dev.w3.org/html5/spec/Overview.html#sectioning-root
http://dev.w3.org/html5/spec/Overview.html#sectioning-content
http://dev.w3.org/html5/spec/Overview.html#sectioning-content

4.figure

5.td

The status of these elements as sectioning root has two implications. First,
each can have its own outline. Secondly, the outline of nested sectioning
root does not appear in, nor does it have an effect on, the outline of its
parent sectioning root.

In practice, this means that headings inside any of the five sectioning root
elements listed above do not affect the outline of the document that they
are a part of.

The final thing (you’ll be glad to hear) that I’ll say about sectioning root is that
the first heading in the document that is not inside sectioning content is
considered to be the document title.

Try the following code in the outliner to see what happens:

<section>
 <h1>this is an h1</h1>
</section>
<h6>this h6 comes first in the source</h6>
<h1>this h1 comes last in the source</h1>

Figure 10: How heading levels at the root level affect the outline.

I won’t try to explain this to you because it will probably only confuse both of
us, so I’ll let you play with it in the outliner. Hint: try using different heading
levels for the implicit sections to see how the outline is affected; for
example, h3 and h4, or two h5s.

Smashing eBook #26│HTML Semantics│ 46

UNTITLED DOCUMENTS

If no heading is at the root level of the document (i.e. not inside sectioning
content), then the document itself will be untitled. This is a pretty serious
problem, and it can occur either through carelessness or, paradoxically, by
thinking carefully about how sectioning content should be used.

Roger Johansson addresses this issue in his excellent article on document
outlines and HTML5 and the follow-up article.

Johansson asks how a proper document outline is supposed to be created
for a blog post or other news-type item using HTML5. If you subscribe to the
belief that your logo or website name should not be in an h1 element, you
could mark up your blog post along the lines of the following:

<body>
 <article>
 <h1>Blog post title</h1>
 <p>Blog post content</p>
 </article>
</body>

The document is untitled. Somewhat reluctantly, Johansson settles on
marking up the website’s title in h1 and using another h1 to mark up the
article’s title. This is a sensible solution and is backed up by the results of
the WebAIM screenreader user survey, in which the majority of respondents
stated a preference for two top-level headings in exactly this format.

This same approach is also widely used on static pages that are built with
HTML5 structural elements, and it could be very useful indeed for screen
reader users. Imagine that you are using a screen reader to find a decent
recipe for chicken pie, and you have a handful of recipe websites open for
comparison. Being able to quickly find out which website you are on using

Smashing eBook #26│HTML Semantics│ 47

http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.456bereastreet.com/archive/201103/html5_sectioning_elements_headings_and_document_outlines/
http://www.456bereastreet.com/archive/201103/html5_sectioning_elements_headings_and_document_outlines/
http://www.456bereastreet.com/archive/201103/html5_sectioning_elements_headings_and_document_outlines/
http://www.456bereastreet.com/archive/201103/html5_sectioning_elements_headings_and_document_outlines/
http://www.456bereastreet.com/archive/201104/html5_document_outline_revisited/
http://www.456bereastreet.com/archive/201104/html5_document_outline_revisited/
http://webaim.org/projects/screenreadersurvey3/#headings
http://webaim.org/projects/screenreadersurvey3/#headings

the shortcut key for headings would be much more useful than seeing only
“chicken pie” on each one.

Not too far behind two top-level headings in the screen reader user survey
was one top-level heading for the document. This is probably my preferred
option in most cases; but as we have already seen, it creates an untitled
body, which is undesirable.

In my opinion, there is an easy way around this problem: don’t use article
as a wrapper for single-blog posts, news items or static page main content.
Remember that article is sectioning content: it creates a sub-section of
the document. But in these cases, the document is the content, and the
content is the document. Setting aside the name of the element, why would
we want to create a sub-section of a document before it has even begun?

Remember, you can still use div!

HGROUP

This is the final item in the list of things to watch out for, and it’s very easy to
understand. The hgroup element can contain only headings (h1 to h6), and
its purpose is to remove all but the highest-level heading it contains from the
outline.

It has been and continues to be the subject of controversy, and its inclusion
in the specification is by no means a given. However, for now, it does
exactly what it says on the tin: it groups headings into one, as far as the
outlining algorithm is concerned.

Smashing eBook #26│HTML Semantics│ 48

http://html5doctor.com/you-can-still-use-div/
http://html5doctor.com/you-can-still-use-div/

In Conclusion
The logic behind the document outlining algorithm can be hard to grasp,
and the spec can sometimes feel like physics: understandable as you’re
reading it, but when you try to confirm your understanding, it dissolves and
you find yourself re-reading it again and again.

But if you remember the basics — that section, article, aside and nav
create sub-sections on Web pages — then you are 90% of the way there. Get
used to marking up content with sectioning elements and to checking your
pages in the outliner, because the more you practice creating well-outlined
documents, the sooner you will grasp the algorithm.

I promise, you will have it cracked after only a handful of times, and you will
never look back. And from that moment on, every Web page you create will
be structured, semantic, robust, well-outlined content.

Smashing eBook #26│HTML Semantics│ 49

Our Pointless Pursuit Of Semantic Value
By Divya Manian

Allow me to paint a picture:

1. You are busy creating a website.

2. You have a thought, “Oh, now I have to add an element.”

3. Then another thought, “I feel so guilty adding a div. Div-itis is terrible, I
hear.”

4. Then, “I should use something else. The aside element might be
appropriate.”

5. Three searches and five articles later, you’re fairly confident that
aside is not semantically correct.

6. You decide on article, because at least it’s not a div.

7. You’ve wasted 40 minutes, with no tangible benefit to show for it.

!is Just Straight Up Sucks
This is not the first time this topic has been broached. In 2004, Andy Budd
wrote on semantic purity versus semantic realism.

If your biggest problem with HTML5 is the distinction between an aside and
a blockquote or the right way to mark up addresses, then you are not using
HTML5 the way it was intended.

Smashing eBook #26│HTML Semantics│ 50

http://www.andybudd.com/archives/2004/05/semantic_coding/
http://www.andybudd.com/archives/2004/05/semantic_coding/
http://www.impressivewebs.com/aside-vs-blockquote-html5/
http://www.impressivewebs.com/aside-vs-blockquote-html5/
http://www.impressivewebs.com/aside-vs-blockquote-html5/
http://www.impressivewebs.com/aside-vs-blockquote-html5/
http://twitter.theinfo.org/29661575610630145
http://twitter.theinfo.org/29661575610630145

Mark-up structures content, but your choice of tags matters a lot less than
we’ve been taught for a while. Let’s go through some of the reasons why.

THE WEB NO LONGER CONSISTS OF STRUCTURED CONTENT

In the golden days of the Web, Web pages were supposed to be
repositories of information and meaning, nothing more. Today, the Web has
content, but meaning is derived from users’ interactions with it.

XML, RDFA, Dublin Core and other structured specifications have very solid
use cases, but those use cases do not account for the majority of
interactions on the Web. Heck, no website really has the purity of semantic
mark-up that such specifications demand. Mark Pilgrim writes about this
much better than I do.

If you have content that demands semantic purity — such as a library
database, a document that needs a table of contents, or an online book (i.e.
anything for which semantic purity makes sense) — then by all means stick
to the HTML5 outlining algorithm, and split hairs on which element should
be an article and which a section. No customer-facing tool exists that
takes advantage of this algorithm by producing a table of contents. No
browser seems to exploit such tools either.

IS IT REALLY ACCESSIBLE?

If accessibility is your reason for using semantic mark-up, then understand
that accessibility and semantic mark-up have very little correlation, due to
the massive abuse of HTML mark-up on the Web. (I would love to link to
Mark Pilgrim’s post on this, but it is dead, so this will have to do.)

The b, strong, i and em tags are equivalent to the span tag as far as the
specification is concerned. And so are some of HTML5’s tags.

Smashing eBook #26│HTML Semantics│ 51

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://web.archive.org/web/20060428021228/http://diveintomark.org/archives/2002/12/30/the_tag_soup_of_a_new_generation
http://web.archive.org/web/20060428021228/http://diveintomark.org/archives/2002/12/30/the_tag_soup_of_a_new_generation
http://krijnhoetmer.nl/irc-logs/whatwg/20090604#l-877
http://krijnhoetmer.nl/irc-logs/whatwg/20090604#l-877
http://www.w3.org/TR/2011/WD-html-aapi-20110414/
http://www.w3.org/TR/2011/WD-html-aapi-20110414/

As stated on HTML5 Accessibility, almost every new HTML5 element
currently provides to assistive technology only as much semantic
information as a div element. So, if you thought that using HTML5 elements
would make your website more accessible, think again. (How much
additional information do <figure> and <figcaption> bring? None.)

The recent debate (or debacle?) on the <time> element is just more proof
of the impermanence of the semantic meanings associated with elements.

IS IT REALLY SEARCHABLE?

If SEO is your grand purpose for using semantic mark-up, then know that
most search engines do not give more credence to a page just because of
its mark-up. The only thing recommended in this SEO guide from Google is
to use relevant headings and anchor links (other search engines work
similarly). Your use of HTML5 elements or of strong or span tags will not
affect how your content is read by them.

There is another way to provide rich data to search engines, and that is via
micro-data. In no way does this make your website rank better on search
engines; it simply adds value to the search result when a relevant one is
found for your website.

IS IT REALLY PORTABLE?

Another much-touted advantage of the semantic Web is data portability.
Miraculously, all devices are supposed to understand the semantic mark-up
used everywhere and be able to parse the information therein with no effort.
Aryeh Gregor puts that myth to sleep:

Smashing eBook #26│HTML Semantics│ 52

http://www.html5accessibility.com/
http://www.html5accessibility.com/
http://www.paciellogroup.com/blog/2011/08/html5-accessibility-chops-the-figure-and-figcaption-elements/
http://www.paciellogroup.com/blog/2011/08/html5-accessibility-chops-the-figure-and-figcaption-elements/
http://html5doctor.com/time-and-data-element/
http://html5doctor.com/time-and-data-element/
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35291
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35291
http://schema.org/
http://schema.org/
http://www.google.com/support/webmasters/bin/answer.py?answer=1211158
http://www.google.com/support/webmasters/bin/answer.py?answer=1211158
https://plus.google.com/105458233028934590147/posts/Q2Wnvy1ysBD
https://plus.google.com/105458233028934590147/posts/Q2Wnvy1ysBD

… +Manu Sporny said that semantic Web people had received feedback
that out-of-band data was harder to keep in sync with content. I can
attest that in MediaWiki’s case this isn’t true, though… The only times I
can see where you’d want to use RDFa or microdata instead of
separate RDF is if either you don’t have good enough page-generation
tools, or you want the metadata to be consumed by specific known
clients that only support inline metadata (e.g. search engines supporting
schema.org or such). If the page is being processed by a script anyway,
and if the script author has ready access to server-side tools that can
extract the metadata into a separate RDF stream, then it’s normally
going to be just as easy to publish as a separate stream as to publish
inline. And it saves a lot of bloat on every page view.

What Now, !en?
• There is no harm using div elements; you can continue using them

instead of section and article. I think we should use the new
elements to make your mark-up readable, not for any inherent semantic
advantage. If you want to use HTML5 section and article tags to
enhance some particular textual documentation for a future document
reader, do it.

• Tools exist today that take advantage of the nav, header and footer
elements. NVDA now assigns implied semantics with these elements.
The elements are straightforward to understand and use.

• There is good support for ARIA landmarks in screen readers, but be
careful when using them with HTML5 elements.

Smashing eBook #26│HTML Semantics│ 53

http://www.accessibleculture.org/research/html5-aria-2011/
http://www.accessibleculture.org/research/html5-aria-2011/
http://www.html5accessibility.com/tests/landmarks.html
http://www.html5accessibility.com/tests/landmarks.html
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/

• HTML5 has a host of new features. I think we should learn about them,
use them, give feedback. Make these features more robust and stable.
Yes, most of these features require that you understand and write
JavaScript and expose features that create a richer experience for your
audience. If that task sounds formidable to you, then start learning how
to code, particularly JavaScript.

Smashing eBook #26│HTML Semantics│ 54

http://platform.html5.org/
http://platform.html5.org/
http://www.highercomputingforeveryone.com/
http://www.highercomputingforeveryone.com/
http://www.highercomputingforeveryone.com/
http://www.highercomputingforeveryone.com/
http://yuilibrary.com/theater/douglas-crockford/crockford-tjpl/
http://yuilibrary.com/theater/douglas-crockford/crockford-tjpl/

Pursuing Semantic Value
By Jeremy Keith

Disclaimer: This article by Jeremy Keith is a reactions to the article on the
pursuit of semantic value by Divya Manian. Both articles are published in the
Opinion column section in which we provide active members of the
community with the opportunity to share their thoughts and ideas publicly.

Divya Manian, one of the super-smart web warriors behind HTML5
Boilerplate, has published an article called Our Pointless Pursuit Of
Semantic Value.

I’m afraid I have to agree with Patrick’s comment when he says that the
abrasive title, the confrontational tone and strawman arguments at the start
of the article make it hard to get to the real message.

But if you can get past the blustery tone and get to the kernel of the article,
it’s a fairly straightforward message: don’t get too hung up on semantics to
the detriment of other important facets of web development. Divya clarifies
this in a comment:

Amen, this is the message the article gets to. Not semantics are useless
but its not worth worrying over minute detail on.

The specific example of divs and sectioning content is troublesome
though. There is a difference between a div and a section or article
(or aside or nav). I don’t just mean the semantic difference (a div conveys
no meaning about the contained content whereas a section element is

Smashing eBook #26│HTML Semantics│ 55

http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-semantic-value/comment-page-1/#comment-554393
http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-semantic-value/comment-page-1/#comment-554393
http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-semantic-value/comment-page-1/#comment-554372
http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-semantic-value/comment-page-1/#comment-554372

specifically for enclosing thematically-related content). There are also
practical differences.

A section element will have an effect on the generated outline for a
document (a div will not). The new outline algorithm in HTML5 will make life
a lot easier for future assistive technology and searchbots (as other people
mentioned in the comments) but it already has practical effects today in
some browsers in their default styling.

Download the HTML document I’ve thrown up at https://gist.github.com/
1360458 and open it in the latest version of Safari, Chrome or Firefox. You’ll
notice that the same element (h1) will have different styling depending on
whether it is within a div or within a section element (thanks to -moz-
any and -webkit-any CSS declarations in the browser’s default
stylesheets).

So that’s one illustration of the practical difference between div and
section.

Now with that said, I somewhat concur with the conclusion of “when in
doubt, just use a div”. I see far too many documents where every div has
been swapped out for a section or an article or a nav or an aside.
But my reason for coming to that conclusion is the polar opposite of Divya’s
reasoning. Whereas Divya is saying there is effectively no difference
between using a div and using sectioning content, the opposite is the case:
it makes a big difference to the document’s outline. So if you use a
section or article or aside or nav without realizing the consequences,
the results could be much worse than if you had simply used a div.

I also agree that there’s a balance to be struck in the native semantics of
HTML. In many ways its power comes from the fact that it is a limited—but
universally understood by browsers—set of semantics. If we had an element

Smashing eBook #26│HTML Semantics│ 56

https://gist.github.com/1360458
https://gist.github.com/1360458
https://gist.github.com/1360458
https://gist.github.com/1360458

for every possible type of content, the language would be useless.
Personally, I’m not convinced that we need a section element and an
article element: the semantics of those two elements are so close as to
be practically identical.

And that’s the reason why right now is exactly the time for web developers
to be thinking about semantics. The specification is still being put together
and our collective voice matters. If we want to have well-considered
semantic elements in the language, we need to take the time to consider
the effects of every new element that could potentially be used to structure
our content.

So I will continue to stop and think when it comes to choosing elements and
class names just as much as I would sweat the details of visual design or the
punctation in my copy or the coding style of my JavaScript.

Smashing eBook #26│HTML Semantics│ 57

!e Semantic Grid System: Page Layout
For Tomorrow
By Tyler Tate

CSS grid frameworks can make your life easier, but they’re not without their
faults. Fortunately for us, modern techniques offer a new approach to
constructing page layouts. But before getting to the solution, we must first
understand the three seemingly insurmountable flaws currently affecting
CSS grids.

Problems

PROBLEM #1: THEY’RE NOT SEMANTIC

The biggest complaint I’ve heard from purists since I created The 1KB CSS
Grid two years ago is that CSS grid systems don’t allow for a proper
separation of mark-up and presentation. Grid systems require that Web
designers add .grid_x CSS classes to HTML elements, mixing
presentational information with otherwise semantic mark-up.

Floated elements must also be cleared, often requiring unnecessary
elements to be added to the page. This is illustrated by the “clearing” div
that ships with 960.gs:

Smashing eBook #26│HTML Semantics│ 58

http://1kbgrid.com/
http://1kbgrid.com/
http://1kbgrid.com/
http://1kbgrid.com/
http://960.gs/
http://960.gs/

<div class="grid_3">
 220
</div>
<div class="grid_9">
 700
</div>
<div class="clear"></div>

PROBLEM #2: THEY’RE NOT FLUID

While CSS grids work well for fixed-width layouts, dealing with fluid
percentages is trickier. While most grid systems do provide a fluid option,
they break down when nested columns are introduced. In the 1KB CSS Grid
example below, .grid_6 would normally be set to a width of 50%,
while .grid_3 would typically be set to 25%.

But when .grid_3 appears inside of a .grid_6 cell, the percentages must
be recalculated. While a typical grid system needs just 12 CSS rules to
specify the widths of all 12 columns, a fluid grid would need 144 rules to
allow for just one level of nesting: possible, but not very convenient.

<div class="column grid_6">
 <div class="row">
 <div class="column grid_3"> </div>
 <div class="column grid_3"> </div>
 </div>
</div>

PROBLEM #3: THEY’RE NOT RESPONSIVE

Responsive Web design is the buzzword of the year. While new tools such
as 1140 CSS Grid and Adapt.js are springing up that enable you to alter a
page’s layout based on screen size or device type, an optimal solution has
yet to arrive.

Smashing eBook #26│HTML Semantics│ 59

http://cssgrid.net/
http://cssgrid.net/
http://adapt.960.gs/
http://adapt.960.gs/

Blame It On !e Tools
All three of these problems directly result from the limitations of our existing
tools. CSS leaves us with the ultimatum of either compromising our
principles by adding presentational classes to mark-up, or sticking to our
guns and forgoing a grid system altogether. But, hey, we can’t do anything
about it, right?

Well, not so fast. While we wait for browsers to add native CSS support for
this flawed grid layout module, a futuristic version of CSS is available today
that’s already supported by every CSS-enabled browser: LESS CSS.

LESS brings powerful new features to CSS.

Smashing eBook #26│HTML Semantics│ 60

http://www.netmagazine.com/features/future-css-layouts
http://www.netmagazine.com/features/future-css-layouts
http://www.markboulton.co.uk/journal/comments/rethinking-css-grids
http://www.markboulton.co.uk/journal/comments/rethinking-css-grids
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/

LESS What?
You’ve probably heard of LESS but perhaps have never given it a try. Similar
to SASS, LESS is extends CSS by giving you the ability to use variables,
perform operations and develop reusable mixins. Below are a few examples
of what it can do.

VARIABLES

Specify a value once, and then reuse it throughout the style sheet by
defining variables.

// LESS
@color: #4D926F;

#header {
 color: @color;
}

The above example would compile as follows:

/* Compiled CSS */
#header {
 color: #4D926F;
}

OPERATIONS

Multiply, divide, add and subtract values and colors using operations.

// LESS
@border-width: 1px;
#header {
 border-left: @border-width * 3;
}

Smashing eBook #26│HTML Semantics│ 61

http://sass-lang.com/docs/yardoc/file.INDENTED_SYNTAX.html
http://sass-lang.com/docs/yardoc/file.INDENTED_SYNTAX.html

In this example, 1px is multiplied by 3 to yield the following:

/* Compiled CSS */
#header {
 border-left: 3px;
}

MIXINS

Most powerful of all, mixins enable entire snippets of CSS to be reused.
Simply include the class name of a mixin within another class. What’s more,
LESS allows parameters to be passed into the mixin.

// LESS
.rounded(@radius) {
 -webkit-border-radius: @radius;
 -moz-border-radius: @radius;
 border-radius: @radius;
}
#header {
 .rounded(5px);
}

Verbose, browser-specific CSS3 properties demonstrate the benefit that
mixins bring:

/* Compiled CSS */
#header {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

Smashing eBook #26│HTML Semantics│ 62

DOWNSIDES TO LESS

Having been skeptical of LESS at first, I’m now a strong advocate. LESS style
sheets are concise and readable, and they encourage code to be reused.
However, there are some potential downsides to be aware of:

1. It has to be compiled. This is one extra step that you don’t have to
worry about with vanilla CSS.

2. Depending on how LESS documents are structured, the compiled CSS
file might be slightly larger than the equivalent hand-crafted CSS file.

A NOTE ON COMPILING LESS

There are three approaches to compiling LESS style sheets into CSS:

• Let the browser do the compiling.
As its name suggests, LESS.js is written in JavaScript and can compile
LESS into CSS directly in the user’s browser. While this method is
convenient for development, using one of the next two methods before
going into production would be best (because compiling in the browser
can take a few hundred milliseconds).

• Use a server-side compiler.
LESS.js can also compile server-side with Node.js, and it has been
ported to several other sever-side languages.

• Use a desktop app.
LESS.app is a Mac app that compiles local files as they’re saved on your
computer.

Smashing eBook #26│HTML Semantics│ 63

http://lesscss.org/
http://lesscss.org/
http://nodejs.org/
http://nodejs.org/
http://incident57.com/less/
http://incident57.com/less/

Introducing !e Semantic Grid System
The innovations that LESS brings to CSS are the foundation for a powerful
new approach to constructing page layouts. That approach is the The
Semantic Grid System. This new breed of CSS grid shines where the others
fall short:

1. It’s semantic;

2. It can be either fixed or fluid;

3. It’s responsive;

4. It allows the number of columns, column widths and gutter widths to be
modified instantly, directly in the style sheet.

The Semantic Grid System uses LESS CSS to offer a new approach to page
layout.

Smashing eBook #26│HTML Semantics│ 64

http://semantic.gs/
http://semantic.gs/
http://semantic.gs/
http://semantic.gs/
http://semantic.gs/
http://semantic.gs/

CONFIGURING THE GRID

Sounds too good to be true? Here’s how it works.

First, import the semantic grid into your working LESS style sheet.

@import 'grid.less';

Next, define variables for the number of columns, and set the desired widths
for the column and gutter. The values entered here will result in a 960-pixel
grid system.

@columns: 12;
@column-width: 60;
@gutter-width: 20;

The grid is now configured and ready to be used for page layout.

USING THE GRID

Now that the grid has been configured, consider two elements on an HTML
page that you would like to lay out side by side.

<body>
 <article>Main</article>
 <section>Sidebar</section>
</body>

The side-by-side layout can be achieved by passing the desired number of
grid units to the .column() mixin (which is defined in the grid.less file).

// LESS
@import 'grid.less';

@columns: 12;
@column-width: 60;
@gutter-width: 20;

Smashing eBook #26│HTML Semantics│ 65

article {
 .column(9);
}
section {
 .column(3);
}

The above LESS would be compiled to CSS as the following:

/* Compiled CSS */
article {
 display: inline;
 float: left;
 margin: 0px 10px;
 width: 700px;
}
section {
 display: inline;
 float: left;
 margin: 0px 10px;
 width: 220px;
}

This page demonstrates the result. What makes this approach so different is
that it does away with ugly .grid_x classes in the mark-up. Instead, column
widths are set directly in the style sheet, enabling a clean separation
between declarative mark-up and presentational style sheets. (It’s called the
semantic grid for a reason, after all.)

SO, WHAT’S BEHIND THE CURTAIN?

For the curious among you, below are the mixins at the center of it all.
Fortunately, these functions are hidden away in the grid.less file and need
not ever be edited.

Smashing eBook #26│HTML Semantics│ 66

http://semantic.gs/examples/fixed/fixed.html
http://semantic.gs/examples/fixed/fixed.html

// Utility variable — you will never need to modify this
@_gridsystem-width: (@column-width*@columns) + (@gutter-
width*@columns) * 1px;

// Set @total-width to 100% for a fluid layout
@total-width: @_gridsystem-width;

// The mixins
.row(@columns:@columns) {
 display: inline-block;
 overflow: hidden;
 width: @total-width*((@gutter-width + @_gridsystem-width)/
@_gridsystem-width);
 margin: 0 @total-width*(((@gutter-width*.5)/@_gridsystem-
width)*-1);
}
.column(@x,@columns:@columns) {
 display: inline;
 float: left;
 width: @total-width*((((@gutter-width+@column-width)*@x)-
@gutter-width) / @_gridsystem-width);
 margin: 0 @total-width*((@gutter-width*.5)/@_gridsystem-
width);
}

Fluid Layouts
The example above demonstrates a fixed pixel-based layout. But fluid
percentage-based layouts are just as easy. To switch from pixels to
percentages, simply add one variable:

// LESS
@total-width: 100%;

Smashing eBook #26│HTML Semantics│ 67

With no other changes, the compiled CSS then becomes this:

/* Compiled CSS */
article {
 display: inline;
 float: left;
 margin: 0px 1.04167%;
 width: 72.9167%;
}
section {
 display: inline;
 float: left;
 margin: 0px 1.04167%;
 width: 22.9167%;
}

This example shows how the percentages are dynamically calculated using
LESS operations, which also applies to nested columns.

Responsive Layouts
No modern grid system would be complete unless we had the ability to
adapt the layout of the page to the size of the user’s screen or device. With
Semantic.gs, manipulating the grid using media queries couldn’t be any
easier:

article { .column(9); }
section { .column(3); }

@media screen and (max-width: 720px) {
 article { .column(12); }
 section { .column(12); }
}

Smashing eBook #26│HTML Semantics│ 68

http://semantic.gs/examples/fluid/fluid.html
http://semantic.gs/examples/fluid/fluid.html
http://semantic.gs/examples/responsive/responsive.html
http://semantic.gs/examples/responsive/responsive.html
http://semantic.gs/examples/responsive/responsive.html
http://semantic.gs/examples/responsive/responsive.html

Try It For Yourself
Just a couple of days ago Twitter released a project called Bootstrap which
provides similar (but more limited) grid system built using LESS variable and
mixins. The future of the CSS grid seems to be taking shape before us.

The Semantic Grid System delivers the best of both worlds: the power and
convenience of a CSS grid and the ideal separation of mark-up and
presentation. Download the grid for yourself, fork it on GitHub, and let us
know what you think!

Smashing eBook #26│HTML Semantics│ 69

http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://semantic.gs/
http://semantic.gs/
https://github.com/twigkit/semantic.gs
https://github.com/twigkit/semantic.gs

About !e Authors

Bruce Lawson
Bruce Lawson evangelises open web technologies for Opera. He co-
authored Introducing HTML5, the best-selling book on HTML5 that has just
been published in its second edition. He blogs at brucelawson.co.uk.

Niels Ma"hijs
Niels Matthijs spends his spare time combining his luxury life with the
agonizing pressure of blogging under his Onderhond moniker. As a front-
end developer he is raised at Internet Architects, investing plenty of time in
making the web a more accessible and pleasant place.

Derek Johnson
Derek builds websites at WebsiteNI and helps curate the HTML5 Gallery,
where he gets particularly hung up about document outlines. His favourite
place in the world is the Mourne Mountains but you are more likely to find
him lurking on Twitter.

Divya Manian
Divya Manian is a web opener for Opera Software in Seattle. She made the
jump from developing device drivers for Motorola phones to designing
websites and has not looked back since. She takes her duties as an Open
Web vigilante seriously which has resulted in collaborative projects such as
HTML5 Boilerplate.

Smashing eBook #26│HTML Semantics│ 70

http://dev.opera.com/
http://dev.opera.com/
http://introducinghtml5.com/
http://introducinghtml5.com/
http://brucelawson.co.uk/
http://brucelawson.co.uk/
http://www.onderhond.com/
http://www.onderhond.com/
http://www.internetarchitects.be/
http://www.internetarchitects.be/
http://www.websiteni.com/
http://www.websiteni.com/
http://html5gallery.com/
http://html5gallery.com/
https://twitter.com/#%21/derekjohnson
https://twitter.com/#%21/derekjohnson

Jeremy Keith
Jeremy Keith is a Web developer and author living and working in Brighton,
England.

Tyler Tate
Tyler Tate is a London-based user experience designer focused on making
the complex feel simple. He leads UX at TwigKit, is the creator of the 1KB
CSS Grid, and has led the design of big web applications from CMS systems
to the Nutshell CRM. You can keep up with him on Twitter.

Smashing eBook #26│HTML Semantics│ 71

http://tylertate.com/
http://tylertate.com/
http://twigkit.com/
http://twigkit.com/
http://1kbgrid.com/
http://1kbgrid.com/
http://1kbgrid.com/
http://1kbgrid.com/
http://nutshell.com/
http://nutshell.com/
http://twitter.com/tylertate
http://twitter.com/tylertate

