

Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version 1: July 2012

ISBN: 978-3-943075-35-9

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Thomas Burkert

Technical Editing: Thomas Burkert

Idea & Concept: Smashing Media GmbH

Smashing eBook #25│Mastering HTML5│ 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and
developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing
companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #25│Mastering HTML5│ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook
The Web changes everyday and, as a Web-developer, you are probably
eager to keep up with the various techniques that help optimizing your
workflow. This eBook "Mastering HTML5" explains to you the facts and
myths of HTML5, shows how to use local storage on websites, teaches how
to optimize images with HTML5 canvas and how to sync content with
HTML5 video.

Table of Contents
Learning To Love HTML5

HTML5: The Facts And The Myths

Local Storage And How To Use It On Websites

Optimize Images With HTML5 Canvas

Syncing Content With HTML5 Video

Behind The Scenes Of Nike Better World

About The Authors

Smashing eBook #25│Mastering HTML5│ 4

Learning to Love HTML5
By Louis Lazaris

It seems that new resources and articles for teaching and promoting HTML5
are popping up almost daily. We’ve been given HTML5 templates in the
form of the HTML5 boilerplate and HTML5 Reset (although they both go
beyond just HTML5 stuff). We’ve got a plethora of books to choose from that
cover HTML5 and its related technologies. We’ve got shivs, galleries, and a
physician to help heal your HTML5 maladies. And don’t forget the official
spec.

From my own vantage point — aside from a few disputes about what the
term “HTML5″ should and shouldn’t mean — the web design and
development community has for the most part embraced all the new
technologies and semantics with a positive attitude.

While it’s certainly true that HTML5 has the potential to change the web for
the better, the reality is that these kinds of major changes can be difficult to
grasp and embrace. I’m personally in the process of gaining a better
understanding of the subtleties of HTML5′s various new features, so I
thought I would discuss some things associated with HTML5 that appear to
be somewhat confusing, and maybe this will help us all understand certain
aspects of the language a little better, enabling us to use the new features in
the most practical and appropriate manner possible.

!e Good (and Easy) Parts
The good stuff in HTML5 has been discussed pretty solidly in a number of
sources including books by Bruce Lawson, Jeremy Keith, and Mark Pilgrim,

Smashing eBook #25│Mastering HTML5│ 5

http://html5boilerplate.com/
http://html5boilerplate.com/
http://html5reset.org/
http://html5reset.org/
http://www.webdesignerdepot.com/2010/05/html5-and-css3-books-to-watch-for-in-2010/
http://www.webdesignerdepot.com/2010/05/html5-and-css3-books-to-watch-for-in-2010/
http://code.google.com/p/html5shiv/
http://code.google.com/p/html5shiv/
http://html5gallery.com/
http://html5gallery.com/
http://html5doctor.com/
http://html5doctor.com/
http://dev.w3.org/html5/spec-author-view/spec.html
http://dev.w3.org/html5/spec-author-view/spec.html
http://dev.w3.org/html5/spec-author-view/spec.html
http://dev.w3.org/html5/spec-author-view/spec.html
http://jeffcroft.com/blog/2010/aug/02/term-html5/
http://jeffcroft.com/blog/2010/aug/02/term-html5/
http://introducinghtml5.com/
http://introducinghtml5.com/
http://books.alistapart.com/products/html5-for-web-designers
http://books.alistapart.com/products/html5-for-web-designers
http://diveintohtml5.org/
http://diveintohtml5.org/

to name a few. The benefits gained from using HTML5 include improved
semantics, reduced redundancies, and inclusion of new features that
minimize the need for complex scripting to achieve standard tasks (like input
validation in forms, for example).

I think those are all commendable improvements in the evolution of the
web’s markup language. Some of the improvements, however, are a little
confusing, and do seem to be a bit revolutionary, as opposed to
evolutionary, the latter of which is one of the design principles on which
HTML5 is based. Let’s look at a few examples, so we can see how flexible
and valuable some of the new elements really are — once we get past some
of the confusion.

An <article> Isn’t Just an Article
Among the additions to the semantic elements are the new <section> and
<article> tags, which will replace certain instances of semantically
meaningless <div> tags that we’re all accustomed to in XHTML. The
problem arises when we try to decipher how these tags should be used.

Someone new to the language would probably assume that an <article>
element would represent a single article like a blog post. But this is not
always the case.

Let’s consider a blog post as an example, which is the same example used
in the spec. Naturally, we would think a blog post marked up in HTML5
would look something like this:

Smashing eBook #25│Mastering HTML5│ 6

http://www.w3.org/TR/html-design-principles/#evolution-not-revolution
http://www.w3.org/TR/html-design-principles/#evolution-not-revolution
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element

<article>
<h1>Title of Post</h1>
<p>Content of post...</p>

<p>Content of post...</p>

</article>
<section>
 <section>
 <p>Comment by: Comment Author</p>
 <p>Comment #1 goes here...</p>
 </section> <section> <p>Comment by: Comment Author</p>
 <p>Comment #2 goes here...</p>
 </section> <section> <p>Comment by: Comment Author</p>
 <p>Comment #3 goes here...</p>
 </section>
</section>

For brevity, I’ve left out some of the other HTML5 tags that might go into
such an example. In this example, the <article> tags wrap the entire
article, then the “section” below it wraps all the comments, each of which is
in its own “section” element.

It would not be invalid or wrong to structure a blog post like this. But
according to the way <article> is described in the spec, the <article>
element should wrap the entire article and the comments. Additionally, each
comment itself could be wrapped in <article> tags that are nested within
the main <article> tag.

Below is a screen grab from the spec, with <article> tags indicated:

Smashing eBook #25│Mastering HTML5│ 7

Article tags can be nested inside article tags — a concept that seems confusing
at first glance.

So, an <article> element can have other <article> elements nested
inside it, thus complicating how we naturally view the word “article”. Bruce
Lawson, co-author of Introducing HTML5, attempts to clear up the confusion
in this interview:

Smashing eBook #25│Mastering HTML5│ 8

http://www.peachpit.com/store/product.aspx?isbn=0321687299
http://www.peachpit.com/store/product.aspx?isbn=0321687299
http://www.peachpit.com/articles/article.aspx?p=1629150
http://www.peachpit.com/articles/article.aspx?p=1629150

“Think of <article> not in terms of print, like “newspaper article” but
as a discrete entity like “article of clothing” that is complete in itself, but
can also mix with other articles to make a wider ensemble.”
— Bruce Lawson

So keep in mind that you can nest <article> elements and an
<article> element can contain more than just article content. Bruce’s
explanation above is very good and is the kind of HTML5 education that’s
needed to help us understand how these new elements can be used.

Section or Article?
Probably one of the most confusing things to figure out when creating an
HTML5 layout is whether or not to use <article> or <section>. As I
write this sentence, I can honestly say I don’t know the difference without
actually looking up what the spec says or referencing one of my HTML5
books. But slowly it’s becoming more clear. I think Jeremy Keith defines
<article> best on page 67 of HTML5 for Web Designers:

“The article element is [a] specialized kind of section. Use it for
self-contained related content… Ask yourself if you would syndicate the
content in an RSS or Atom feed. If the content still makes sense in that

context, then article is probably the right element to use.”
— Jeremy Keith, HTML5 for Web Designers

Keith’s explanation helps a lot, but then he goes on to explain that the
difference between <article> and <section> is quite small, and it’s up
to each developer to decide how these elements should be used. And

Smashing eBook #25│Mastering HTML5│ 9

adding to the confusion is the fact that you can have multiple articles within
sections and multiple sections within articles.

As a result, you might wonder why we have both. The main difference is that
the <article> element is designed for syndication, whereas the
<section> element is designed for document structure and portability.
This simple way to view the differences certainly helps make the two new
elements a little more distinct. The important thing to keep in mind here is
that, despite our initial confusion, these changes, when more widely
adopted, are going to help developers and content creators to improve the
way they work and the way content is shared.

Headers and Footers (Plural!)
Two other elements introduced in HTML5 are the <header> and
<footer> elements. On the surface, these seem pretty straightforward. For
years we’ve marking up our website headers and footers with <div
id="header">, <div id="footer"> or similar. This is great for DOM
manipulation and styling, because we can target these elements directly.
But they mean nothing semantically.

“The div element has no defined semantics, and the id attribute has
no defined semantics. (User agents are not allowed to infer any

meaning from the value of the id attribute.)”

— Mark Pilgrim, Dive Into HTML5

HTML5′s introduction of <header> and <footer> elements is the perfect
way to remedy this problem of semantics, especially for such often-used
elements. But these elements are not as straightforward as they seem.

Smashing eBook #25│Mastering HTML5│ 10

http://diveintohtml5.org/semantics.html#header-element
http://diveintohtml5.org/semantics.html#header-element

Technically speaking, if every website in the world added one <header>
and one <footer> to each of their pages, this would be perfectly valid
HTML5. But these new elements are not just limited to use as a “website
header” and “website footer”.

A header is designed to mark up introductory or navigational aids, and a
footer is designed to contain information about the containing element. For
example, if you used the footer element as the footer for a full web page,
then in that case copyright, policy links, and related content might be
appropriate for it to hold. A header on the same page might contain a logo
and navigation bar.

But the same page might also include multiple <section> elements. Each
of those sections is permitted to contain its own header and/or footer
element. Keith sums up the purpose of these elements well:

“A header will usually appear at the top of a document or section, but
it doesn’t have to. It is defined by its content… rather than its position.”

“Like the header element, footer sounds like it’s a description of

position, but as with header, this isn’t the case.”

— Jeremy Keith, HTML5 for Web Designers

And the spec adds to Keith’s clarification by noting:

“The header element is not sectioning content; it doesn’t introduce a
new section.”
— The header element in the HTML5 specification

Smashing eBook #25│Mastering HTML5│ 11

http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element

These explanations help dispel any false assumptions we might have about
these new elements, so we can understand how these elements can be
used. Really, this method of dividing pages into portable and syndicatible
content is just adding semantics to what content creators and developers
have been doing for years.

Headings Down A Different Path
Prior to HTML5, heading tags (<h1> through <h6>) were pretty easy to
understand. Over the years, some best practices have been adopted in
order to improve semantics, SEO, and accessibility. Generally, we’ve
become accustomed to including a single <h1> element on each page, with
the other heading elements following sequentially without gaps (although
sometimes it would be necessary to reverse the order).

With the introduction of HTML5, to use the new structural elements we need
to rethink the way we view the structure of our pages.

Here are some things to note about the changes in heading/document
structure in HTML5

• Instead of a single <h1> element per page, HTML5 best practice
encourages up to one <h1> for each <section> element (or other
section defined by some other means)

• Although we’re permitted to start a section with an <h2> (or lower-
ranked) element, it’s strongly encouraged to start each <section> with
an <h1> element to help sections become portable

• Document nodes are created by sections, not headings (unlike previous
versions of HTML)

Smashing eBook #25│Mastering HTML5│ 12

http://www.456bereastreet.com/archive/200911/headings_and_document_structure_conclusions/
http://www.456bereastreet.com/archive/200911/headings_and_document_structure_conclusions/
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#headings-and-sections
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#headings-and-sections

• An <hgroup> element is used to group related heading elements that
you want to act as a single heading for a defined or implied section;
<hgroup> is not used on every set of headings, only those that act as a
single unit outside of adjacent content

• To see if you’re structuring your document correctly, you can use the
HTML5 Outliner

• Despite the above points, whatever heading/document structure you
used in HTML4 or XHTML will still be valid HTML5

So, although the old way we structure pages does not amount to invalid
HTML5, our view of what constitutes “best practice” document structure is
changing for the better.

Block or Inline? Neither! (Sort of…)
For layout and styling purposes, CSS developers are accustomed to HTML
elements (for styling and layout purposes) being defined under one of two
categories: Block elements and inline elements (although you could divide
those two into further categories). This understanding simplified our
expectations of an element’s display on any given page, making it easier
(once we grasp the difference between the two) to style and maneuver the
elements.

HTML5 evolves this concept to include multiple categories, none of which is
block or inline. Well, theoretically, block and inline elements still exist, but
they do so under different labels. Now the different categories of elements
include:

• Grouping Content

• Text-Level Semantics

Smashing eBook #25│Mastering HTML5│ 13

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/
http://reference.sitepoint.com/css/formattingcontext
http://reference.sitepoint.com/css/formattingcontext
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html

• Sectioning Content

• Form Elements

• Embedded Content

I certainly welcome this kind of improvement to more appropriately
categorize elements, and I think developers will adapt well to these
changes, but it is important that we promote proper nomenclature to ensure
minimal confusion over how these elements will display by default. Of all the
areas discussed in this article, however, I think this one is the easiest to
grasp and accept.

Conclusion
While this summarizes some of what I’ve learned in my study of HTML5, a far
better way for anyone to learn about these new features to the markup is to
pick up a book on the topic. I highly recommend one of those mentioned in
the article, or you can read Mark Pilgrim’s book online.

These new elements and concepts don’t have to be confusing. We can take
the time to study them carefully, avoiding confusion and dispelling myths.
This will help us enjoy the benefits of these new elements as soon as
possible, and will help developers and content creators pave the way
towards a more meaningful web — a web that, to paraphrase Jeremy Keith,
‘wouldn’t exist without markup’.

Smashing eBook #25│Mastering HTML5│ 14

http://www.whatwg.org/specs/web-apps/current-work/multipage/content-models.html#sectioning-content-0
http://www.whatwg.org/specs/web-apps/current-work/multipage/content-models.html#sectioning-content-0
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#forms
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#forms
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content-1.html#embedded-content-1
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content-1.html#embedded-content-1
http://diveintohtml5.org/
http://diveintohtml5.org/

HTML5: !e Facts And !e Myths
By Bruce Lawson

You can’t escape it. Everyone’s talking about HTML5. it’s perhaps the most
hyped technology since people started putting rounded corners on
everything and using unnecessary gradients. In fact, a lot of what people call
HTML5 is actually just old-fashioned DHTML or AJAX. Mixed in with all the
information is a lot of misinformation, so here, JavaScript expert Remy Sharp
and Opera’s Bruce Lawson look at some of the myths and sort the truth from
the common misconceptions.

First, Some Facts
Once upon a time, there was a lovely language called HTML, which was so
simple that writing websites with it was very easy. So, everyone did, and the
Web transformed from a linked collection of physics papers to what we
know and love today.

Most pages didn’t conform to the simple rules of the language (because
their authors were rightly concerned more with the message than the
medium), so every browser had to be forgiving with bad code and do its
best to work out what its author wanted to display.

In 1999, the W3C decided to discontinue work on HTML and move the world
toward XHTML. This was all good, until a few people noticed that the work
to upgrade the language to XHTML2 had very little to do with the real Web.
Being XML, the spec required a browser to stop rendering if it encountered
an error. And because the W3C was writing a new language that was better
than simple old HTML, it deprecated elements such as and <a>.

Smashing eBook #25│Mastering HTML5│ 15

A group of developers at Opera and Mozilla disagreed with this approach
and presented a paper to the W3C in 2004 arguing that, “We consider Web
Applications to be an important area that has not been adequately served
by existing technologies… There is a rising threat of single-vendor solutions
addressing this problem before jointly-developed specifications.”

The paper suggested seven design principles:

1. Backwards compatibility, and a clear migration path.

2. Well-defined error handling, like CSS (i.e. ignore unknown stuff and
move on), compared to XML’s “draconian” error handling.

3. Users should not be exposed to authoring errors.

4. Practical use: every feature that goes into the Web-applications
specifications must be justified by a practical use case. The reverse is
not necessarily true: every use case does not necessarily warrant a
new feature.

5. Scripting is here to stay (but should be avoided where more convenient
declarative mark-up can be used).

6. Avoid device-specific profiling.

7. Make the process open. (The Web has benefited from being developed
in the open. Mailing lists, archives and draft specifications should
continuously be visible to the public.)

The paper was rejected by the W3C, and so Opera and Mozilla, later joined
by Apple, continued a mailing list called Web Hypertext Application
Technology Working Group (WHATWG), working on their proof-of-concept
specification. The spec extended HTML4 forms, until it grew into a spec
called Web Applications 1.0, under the continued editorship of Ian Hickson,
who left Opera for Google.

Smashing eBook #25│Mastering HTML5│ 16

http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.hixie.ch/specs/html/forms/web-forms
http://www.hixie.ch/specs/html/forms/web-forms

In 2006, the W3C realized its mistake and decided to resurrect HTML,
asking WHATWG for its spec to use as the basis of what is now called
HTML5.

Those are the historical facts. Now, let’s look at some hysterical myths.

!e Myths

“I CAN’T USE HTML5 UNTIL 2012 (OR 2022)”

This is a misconception based on the projected date that HTML5 will reach
the stage in the W3C process known as Candidate Recommendation (REC).
The WHATWG wiki says this:

For a spec to become a REC today, it requires two 100% complete and
fully interoperable implementations, which is proven by each
successfully passing literally thousands of test cases (20,000 tests for
the whole spec would probably be a conservative estimate). When you
consider how long it takes to write that many test cases and how long it
takes to implement each feature, you’ll begin to understand why the
time frame seems so long.

So, by definition, the spec won’t be finished until you can use all of it, and in
two browsers.

Of course, what really matters is the bits of HTML5 that are already
supported in the browsers. Any list will be out of date within about a week
because the browser makers are innovating so quickly. Also, much of the
new functionality can be replicated with JavaScript in browsers that don’t yet
have support. The <canvas> property is in all modern browsers and will be

Smashing eBook #25│Mastering HTML5│ 17

http://wiki.whatwg.org/wiki/FAQ#When_will_we_be_able_to_start_using_these_new_features.3F
http://wiki.whatwg.org/wiki/FAQ#When_will_we_be_able_to_start_using_these_new_features.3F
http://www.html5patch.com/patches
http://www.html5patch.com/patches

in Internet Explorer 9, but it can be faked in old versions of IE with the
excanvas library. The <video> and <audio> properties can be faked with
Flash in old browsers.

HTML5 is designed to degrade gracefully, so with clever JavaScript and
some thought, all content should be available on older browsers.

“MY BROWSER SUPPORTS HTML5, BUT YOURS DOESN’T”

There’s a myth that HTML5 is some monolithic, indivisible thing. It’s not. It’s a
collection of features, as we’ve seen above. So, in the short term, you
cannot say that a browser supports everything in the spec. And when some
browser or other does, it won’t matter because we’ll all be much too excited
about the next iteration of HTML by then.

What a terrible mess, you’re thinking? But consider that CSS 2.1 is not yet a
finished spec, and yet we all use it each and every day. We use CSS3,
happily adding border-radius, which will soon be supported everywhere,
while other aspects of CSS3 aren’t supported anywhere at all.

Be wary of browser “scoring” websites. They often test for things that have
nothing to do with HTML5, such as CSS, SVG and even Web fonts. What
matters is what you need to do, what’s supported by the browsers your
client’s audience will be using and how much you can fake with JavaScript.

HTML5 LEGALIZES TAG SOUP

HTML5 is a lot more forgiving in its syntax than XHTML: you can write tags in
uppercase, lowercase or a mixture of the two. You don’t need to self-close
tags such as img, so the following are both legal:

Smashing eBook #25│Mastering HTML5│ 18

http://excanvas.sourceforge.net/
http://excanvas.sourceforge.net/

You don’t need to wrap attributes in quotation marks, so the following are
both legal:

You can use uppercase or lowercase (or mix them), so all of these are legal:

This isn’t any different from HTML4, but it probably comes as quite a shock if
you’re used to XHTML. In reality, if you were serving your pages as a
combination of text and HTML, rather than XML (and you probably were,
because Internet Explorer 8 and below couldn’t render true XHTML), then it
never mattered anyway: the browser never cared about trailing slashes,
quoted attributes or case—only the validator did.

So, while the syntax appears to be looser, the actual parsing rules are much
tighter. The difference is that there is no more tag soup; the specification
describes exactly what to do with invalid mark-up so that all conforming
browsers produce the same DOM. If you’ve ever written JavaScript that has
to walk the DOM, then you’re aware of the horrors that inconsistent DOMs
can bring.

This error correction is no reason to churn out invalid code, though. The
DOM that HTML5 creates for you might not be the DOM you want, so
ensuring that your HTML5 validates is still essential. With all this new stuff,
overlooking a small syntax error that stops your script from working or that
makes your CSS unstylish is easy, which is why we have HTML5 validators.

Far from legitimizing tag soup, HTML5 consigns it to history. Souper.

Smashing eBook #25│Mastering HTML5│ 19

http://en.wikipedia.org/wiki/Tag_soup
http://en.wikipedia.org/wiki/Tag_soup
http://html5.validator.nu/
http://html5.validator.nu/

“I NEED TO CONVERT MY XHTML WEBSITE TO HTML5”

Is HTML5′s tolerance of looser syntax the death knell for XHTML? After all,
the working group to develop XHTML 2 was disbanded, right?

True, the XHTML 2 group was disbanded at the end of 2009; it was working
on an unimplemented spec that competed with HTML5, so having two
groups was a waste of W3C resources. But XHTML 1 was a finished spec
that is widely supported in all browsers and that will continue to work in
browsers for as long as needed. Your XHTML websites are therefore safe.

HTML5 KILLS XML

Not at all. If you need to use XML rather than HTML, you can use XHTML5,
which includes all the wonders of HTML5 but which must be in well-formed
XHTML syntax (i.e. quoted attributes, trailing slashes to close some
elements, lowercase elements and the like.)

Actually, you can’t use all the wonders of HTML5 in XHTML5: <noscript>
won’t work. But you’re not still using that, are you?

HTML5 WILL KILL FLASH AND PLUG-INS

The <canvas> tag allows scripted images and animations that react to the
keyboard and that therefore can compete with some simpler uses of Adobe
Flash. HTML5 has native capability for playing video and audio.

Just as when CSS Web fonts weren’t widely supported and Flash was used
in sIFR to fill the gaps, Flash also saves the day by making HTML5 video
backwards-compatible. Because HTML5 is designed to be “fake-able” in
older browsers, the mark-up between the video tags is ignored by browsers
that understand HTML5 and is rendered by older browsers. Therefore,

Smashing eBook #25│Mastering HTML5│ 20

http://mathiasbynens.be/notes/xhtml5
http://mathiasbynens.be/notes/xhtml5
http://www.wait-till-i.com/2005/06/21/six-javascript-features-we-do-not-need-any-longer/
http://www.wait-till-i.com/2005/06/21/six-javascript-features-we-do-not-need-any-longer/
http://www.mikeindustries.com/blog/sifr
http://www.mikeindustries.com/blog/sifr

embedding fall-back video with Flash is possible using the old-school
<object> or <embed> tags, as pioneered by Kroc Camen is his article
“Video for Everybody!” (see the screenshot below).

But not all of Flash’s use cases are usurped by HTML5. There is no way to
do digital rights management in HTML5; browsers such as Opera, Firefox
and Chrome allow visitors to save video to their machines with a click of the
context menu. If you need to prevent video from being saved, you’ll need to
use plug-ins. Capturing input from a user’s microphone or camera is
currently only possible with Flash (although a <device> element is being

Smashing eBook #25│Mastering HTML5│ 21

http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices

specified for “post-5″ HTML), so if you’re keen to write a Chatroulette killer,
HTML5 isn’t for you.

HTML5 IS BAD FOR ACCESSIBILITY

A lot of discussion is going on about the accessibility of HTML5. This is good
and to be welcomed: with so many changes to the basic language of the
Web, ensuring that the Web is accessible to people who cannot see or use a
mouse is vital. Also vital is building in the solution, rather than bolting it on as
an afterthought: after all, many (most?) authors don’t even add alternate text
to images, so out-of-the-box accessibility is much more likely to succeed
than relying on people to add it.

This is why it’s great that HTML5 adds native controls for things like sliders
(<input type=range>, currently supported in Opera and Webkit
browsers) and date pickers (<input type=date>, Opera only)—see
Bruce’s HTML5 forms demo)—because previously we had to fake these with
JavaScript and images and then add keyboard support and WAI-ARIA roles
and attributes.

The <canvas> tag is a different story. It is an Apple invention that was
reverse-engineered by other browser makers and then retrospectively
specified as part of HTML5, so there is no built-in accessibility. If you’re just
using it for eye-candy, that’s fine; think of it as an image, but without any
possibility of alternate text (some additions to the spec have been
suggested, but nothing is implemented yet). So, ensure that any information
you deliver via <canvas> supplements more accessible information
elsewhere.

Text in a <canvas> becomes simply pixels, just like text in images, and so
is invisible to assistive technology and screen readers. Consider using the
W3C graphics technology Scalable Vector Graphics (SVG) instead,

Smashing eBook #25│Mastering HTML5│ 22

http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://people.opera.com/brucel/demo/html5-forms-demo.html
http://people.opera.com/brucel/demo/html5-forms-demo.html
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

especially for things such as dynamic graphs and animating text. SVG is
supported in all the major browsers, including IE9 (but not IE8 or below,
although the SVGweb library can fake SVG with Flash in older browsers).

The situation with <video> and <audio> is promising. Although not fully
specified (and so not yet implemented in any browsers), a new <track>
element has been included in the HTML5 spec that allows timed transcripts
(or karaoke lyrics or captions for the deaf or subtitles for foreign-language
media) to be associated with multimedia. It can be faked in JavaScript.
Alternatively (and better for search engines), you could include transcripts
directly on the page below the video and use JavaScript to overlay captions,
synchronized with the video.

“AN HTML5 GURU WILL HOLD MY HAND AS I DO IT THE FIRST TIME”

If only this were true. However, the charming Paul Irish and lovely Divya
Manian will be as good as there for you, with their HTML5 Boilerplate, which
is a set of files you can use as templates for your projects. Boilerplate brings
in the JavaScript you need to style the new elements in IE; pulls in jQuery
from the Google Content Distribution Network (CDN), but with fall-back links
to your server in case the CDN server is down.

It adds mark-up that is adaptable to iOS, Android and Opera Mobile; and
adds a CSS skeleton with a comprehensive reset style sheet. There’s even
an .htaccess file that serves your HTML5 video with the right MIME types.
You won’t need all of it, and you’re encouraged to delete the stuff that’s
unnecessary to your project to avoid bloat.

Smashing eBook #25│Mastering HTML5│ 23

http://code.google.com/p/svgweb/
http://code.google.com/p/svgweb/
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://people.opera.com/philipj/2010/07/21/html5-video-webinar/demos/track.html
http://people.opera.com/philipj/2010/07/21/html5-video-webinar/demos/track.html
http://people.opera.com/brucel/demo/video/multilingual-synergy.html
http://people.opera.com/brucel/demo/video/multilingual-synergy.html
http://html5boilerplate.com/
http://html5boilerplate.com/

Local Storage And How To Use It On
Websites
By Christian Heilmann

Storing information locally on a user’s computer is a powerful strategy for a
developer who is creating something for the Web. In this article, we’ll look at
how easy it is to store information on a computer to read later and explain
what you can use that for.

Adding State To !e Web: !e “Why” Of Local Storage
The main problem with HTTP as the main transport layer of the Web is that it
is stateless. This means that when you use an application and then close it,
its state will be reset the next time you open it. If you close an application on
your desktop and re-open it, its most recent state is restored.

This is why, as a developer, you need to store the state of your interface
somewhere. Normally, this is done server-side, and you would check the
user name to know which state to revert to. But what if you don’t want to
force people to sign up?

This is where local storage comes in. You would keep a key on the user’s
computer and read it out when the user returns.

C Is For Cookie. Is !at Good Enough For Me?
The classic way to do this is by using a cookie. A cookie is a text file hosted
on the user’s computer and connected to the domain that your website runs

Smashing eBook #25│Mastering HTML5│ 24

on. You can store information in them, read them out and delete them.
Cookies have a few limitations though:

• They add to the load of every document accessed on the domain.

• They allow up to only 4 KB of data storage.

• Because cookies have been used to spy on people’s surfing behavior,
security-conscious people and companies turn them off or request to be
asked every time whether a cookie should be set.

To work around the issue of local storage — with cookies being a rather
dated solution to the problem — the WHATWG and W3C came up with a few
local storage specs, which were originally a part of HTML5 but then put
aside because HTML5 was already big enough.

Using Local Storage In HTML5-Capable Browsers
Using local storage in modern browsers is ridiculously easy. All you have to
do is modify the localStorage object in JavaScript. You can do that
directly or (and this is probably cleaner) use the setItem() and
getItem() method:

localStorage.setItem('favoriteflavor','vanilla');

If you read out the favoriteflavor key, you will get back “vanilla”:

var taste = localStorage.getItem('favoriteflavor');
// -> "vanilla"

To remove the item, you can use — can you guess? — the removeItem()
method:

Smashing eBook #25│Mastering HTML5│ 25

http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://hacks.mozilla.org/2009/06/localstorage/
http://hacks.mozilla.org/2009/06/localstorage/

localStorage.removeItem('favoriteflavor');
var taste = localStorage.getItem('favoriteflavor');
// -> null

That’s it! You can also use sessionStorage instead of localStorage if
you want the data to be maintained only until the browser window closes.

Working Around !e “Strings Only” Issue
One annoying shortcoming of local storage is that you can only store strings
in the different keys. This means that when you have an object, it will not be
stored the right way.

You can see this when you try the following code:

var car = {};
car.wheels = 4;
car.doors = 2;
car.sound = 'vroom';
car.name = 'Lightning McQueen';
console.log(car);
localStorage.setItem('car', car);
console.log(localStorage.getItem('car'));

Trying this out in the console shows that the data is stored as [object
Object] and not the real object information:

Smashing eBook #25│Mastering HTML5│ 26

You can work around this by using the native JSON.stringify() and
JSON.parse() methods:

var car = {};
car.wheels = 4;
car.doors = 2;
car.sound = 'vroom';
car.name = 'Lightning McQueen';
console.log(car);
localStorage.setItem('car', JSON.stringify(car));
console.log(JSON.parse(localStorage.getItem('car')));

Smashing eBook #25│Mastering HTML5│ 27

Where To Find Local Storage Data And How To
Remove It
During development, you might sometimes get stuck and wonder what is
going on. Of course, you can always access the data using the right
methods, but sometimes you just want to clear the plate. In Opera, you can
do this by going to Preferences → Advanced → Storage, where you will see
which domains have local data and how much:

Smashing eBook #25│Mastering HTML5│ 28

Doing this in Chrome is a bit more problematic, which is why we made this
screencast.

Mozilla has no menu access so far, but will in future. For now, you can go to
the Firebug console and delete storage manually easily enough.

So, that’s how you use local storage. But what can you use it for?

Smashing eBook #25│Mastering HTML5│ 29

http://coding.smashingmagazine.com/wp-content/uploads/2010/10/opera-e1285930764969.png
http://coding.smashingmagazine.com/wp-content/uploads/2010/10/opera-e1285930764969.png
http://www.youtube.com/watch?v=iC2dbwAkxPY&feature=player_embedded
http://www.youtube.com/watch?v=iC2dbwAkxPY&feature=player_embedded

Use Case #1: Local Storage Of Web Service Data
One of the first uses for local storage that I discovered was caching data
from the Web when it takes a long time to get it. My World Info entry for the
Event Apart 10K challenge shows what I mean by that.

When you call the demo the first time, you have to wait up to 20 seconds to
load the names and geographical locations of all the countries in the world
from the Yahoo GeoPlanet Web service. If you call the demo a second time,
there is no waiting whatsoever because — you guessed it — I’ve cached it
on your computer using local storage.

The following code (which uses jQuery) provides the main functionality for
this. If local storage is supported and there is a key called
thewholefrigginworld, then call the render() method, which displays
the information. Otherwise, show a loading message and make the call to
the Geo API using getJSON(). Once the data has loaded, store it in
thewholefrigginworld and call render() with the same data:

if(localStorage &&
localStorage.getItem('thewholefrigginworld')){

render(JSON.parse(localStorage.getItem('thewholefrigginworld')
));
} else {
 $('#list').html('<p class="load">'+loading+'</p>');
 var query = 'select centroid,woeid,name,boundingBox'+
 ' from geo.places.children(0)'+
 ' where parent_woeid=1 and placetype="country"'+
 ' | sort(field="name")';
 var YQL = 'http://query.yahooapis.com/v1/public/yql?q='+
 encodeURIComponent(query)
+'&diagnostics=false&format=json';
 $.getJSON(YQL,function(data){

Smashing eBook #25│Mastering HTML5│ 30

http://10k.aneventapart.com/Entry/185
http://10k.aneventapart.com/Entry/185
http://developer.yahoo.com/geo
http://developer.yahoo.com/geo
http://query.yahooapis.com/v1/public/yql?q='+
http://query.yahooapis.com/v1/public/yql?q='+

 if(localStorage){

localStorage.setItem('thewholefrigginworld',JSON.stringify(dat
a));
 }
 render(data);
 });
}

You can see the difference in loading times in this screencast.

The code for the world info is available on GitHub.

This can be extremely powerful. If a Web service allows you only a certain
number of calls per hour but the data doesn’t change all that often, you
could store the information in local storage and thus keep users from using
up your quota. A photo badge, for example, could pull new images every six
hours, rather than every minute.

This is very common when using Web services server-side. Local caching
keeps you from being banned from services, and it also means that when a
call to the API fails for some reason, you will still have information to display.

getJSON() in jQuery is especially egregious in accessing services and
breaking their cache, as explained in this blog post from the YQL team.
Because the request to the service using getJSON() creates a unique URL
every time, the service does not deliver its cached version but rather fully
accesses the system and databases every time you read data from it. This is
not efficient, which is why you should cache locally and use ajax() instead.

Smashing eBook #25│Mastering HTML5│ 31

http://www.screenr.com/hO4
http://www.screenr.com/hO4
http://github.com/codepo8/worldinfo
http://github.com/codepo8/worldinfo
http://www.yqlblog.net/blog/2010/03/12/avoiding-rate-limits-and-getting-banned-in-yql-and-pipes-caching-is-your-friend/
http://www.yqlblog.net/blog/2010/03/12/avoiding-rate-limits-and-getting-banned-in-yql-and-pipes-caching-is-your-friend/

Use Case #2: Maintaining !e State Of An Interface
!e Simple Way
Another use case is to store the state of interfaces. This could be as crude
as storing the entire HTML or as clever as maintaining an object with the
state of all of your widgets. One instance where I am using local storage to
cache the HTML of an interface is the Yahoo Firehose research interface
(screencast, source on GitHub):

The code is very simple — using YUI3 and a test for local storage around the
local storage call:

YUI().use('node', function(Y) {
 if(('localStorage' in window) && window['localStorage'] !==
null){
 var key = 'lastyahoofirehose';
 <!--?php if(isset($_POST['sent']) || isset($_POST['moar']))
{?-->
 localStorage.setItem(key,Y.one('form').get('innerHTML'));
 <!--?php }else{ ?-->
 if(key in localStorage){

Y.one('#mainform').set('innerHTML',localStorage.getItem(key));
 Y.one('#hd').append('<p
class="message">Notice: We restored your last
search for you - not live data');
 }
 <!--?php } ?-->
 }
});</p>

Smashing eBook #25│Mastering HTML5│ 32

http://ff8phhaa.joyent.us/firehose-research/index.php
http://ff8phhaa.joyent.us/firehose-research/index.php
http://youtu.be/gw83A7zaRX8
http://youtu.be/gw83A7zaRX8
http://github.com/codepo8/firehose-research
http://github.com/codepo8/firehose-research

You don’t need YUI at all; it only makes it easier. The logic to generically
cache interfaces in local storage is always the same: check if a “Submit”
button has been activated (in PHP, Python, Ruby or whatever) and, if so,
store the innerHTML of the entire form; otherwise, just read from local
storage and override the innerHTML of the form.

!e Dark Side Of Local Storage
Of course, any powerful technology comes with the danger of people
abusing it for darker purposes. Samy, the man behind the “Samy is my hero”
MySpace worm, recently released a rather scary demo called Evercookie,
which shows how to exploit all kind of techniques, including local storage, to
store information of a user on their computer even when cookies are turned
off. This code could be used in all kinds of ways, and to date there is no way
around it.

Research like this shows that we need to look at HTML5′s features and add-
ons from a security perspective very soon to make sure that people can’t
record user actions and information without the user’s knowledge. An opt-in
for local storage, much like you have to opt in to share your geographic
location, might be in order; but from a UX perspective this is considered
clunky and intrusive. Got any good ideas?

Smashing eBook #25│Mastering HTML5│ 33

http://www.wait-till-i.com/2010/08/26/using-html5-storage-to-cache-application-interfaces/
http://www.wait-till-i.com/2010/08/26/using-html5-storage-to-cache-application-interfaces/
http://www.wait-till-i.com/2010/08/26/using-html5-storage-to-cache-application-interfaces/
http://www.wait-till-i.com/2010/08/26/using-html5-storage-to-cache-application-interfaces/
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://samy.pl/evercookie/
http://samy.pl/evercookie/

Optimize Images With HTML5 Canvas
By Sergey Chikuyonok

Images have always been the heaviest component of websites. Even if high-
speed Internet access gets cheaper and more widely available, websites will
get heavier more quickly. If you really care about your visitors, then spend
some time deciding between good-quality images that are bigger in size
and poorer-quality images that download more quickly. And keep in mind
that modern Web browsers have enough power to enhance images right on
the user’s computer. In this article, I’ll demonstrate one possible solution.

Let’s refer to an image that I came across recently in my job. As you can see,
this image is of stage curtains and has some (intentional) light noise:

Smashing eBook #25│Mastering HTML5│ 34

http://media.smashingmagazine.com/wp-content/uploads/2011/08/image.png
http://media.smashingmagazine.com/wp-content/uploads/2011/08/image.png

Optimizing an image like this would be a real pain because it contains a lot
of red (which causes more artifacts in JPEG) and noise (which creates awful
artifacts in JPEG and is bad for PNG packing). The best optimization I could
get for this image was 330 KB JPEG, which is quite much for a single image.
So, I decided to do some experiments with image enhancement right in the
user’s browser.

If you look closely at this image, you’ll see that it consists of two layers: the
noise and the stage curtains. If we remove the noise, then the image shrinks
to 70 KB in JPEG, which is really nice. Thus, our goal becomes to pass a
noiseless image to the user and then add noise to the image right in the
Web browser. This will greatly reduce the downloading time and make the
Web page perform better.

In Photoshop, generating monochromatic noise is very easy: just go to
Filter → Noise → Add Noise. But in the original image, the noise actually
darkens some pixels (i.e. there are no white pixels). This brings a new
challenge: to apply a noise layer with the “Multiply” blending mode on the
stage image.

HTML5 Canvas
All modern Web browsers support the canvas element. While early canvas
implementations offered only a drawing API, modern implementations allow
authors to analyze and manipulate every image pixel. This can be done with
the ImageData interface, which represents an image data’s width, height
and array of pixels.

The canvas pixel array is a plain array containing each pixels’s RGBa data.
Here is what that data array looks like:

Smashing eBook #25│Mastering HTML5│ 35

http://media.smashingmagazine.com/wp-content/uploads/2011/08/stage-bg1.jpg
http://media.smashingmagazine.com/wp-content/uploads/2011/08/stage-bg1.jpg
http://coding.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://coding.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://coding.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#imagedata
http://coding.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#imagedata

pixelData = [pixel1_red, pixel1_green,
pixel1_blue, pixel1_alpha, pixel2_red,
pixel2_green, pixel2_blue, pixel2_alpha, …];

Thus, an image data array contains total_pixels×4 elements. For
example, a 200×100 image would contain 200×100×4 = 80,000 elements in
this array.

To analyze and manipulate individual canvas pixels, we have to get image
data from it, then modify the pixel array and then put data back into the
canvas:

// Coordinates of image pixel that we will modify
var x = 10, y = 20;

// Create a new canvas
var canvas = document.createElement('canvas');
canvas.width = canvas.height = 100;
document.body.appendChild(canvas);

// Get drawing context
var ctx = canvas.getContext('2d');
// Get image data
var imageData = ctx.getImageData(0, 0, canvas.width,
canvas.height);
// Calculate offset for pixel
var offset = (x - 1 + (y - 1) * canvas.width) * 4;

// Set pixel color to opaque orange
imageData.data[offset] = 255; // red channel
imageData.data[offset + 1] = 127; // green channel
imageData.data[offset + 2] = 0; // blue channel
imageData.data[offset + 3] = 255; // alpha channel

// Put image data back into canvas
ctx.putImageData(imageData, 0, 0);

Smashing eBook #25│Mastering HTML5│ 36

Generating Noise
Once we know how to manipulate individual canvas pixels, we can easily
create noise layer. A simple function that generates monochromatic noise
might look like this:

function addNoise(canvas) {
 var ctx = canvas.getContext('2d');

 // Get canvas pixels
 var imageData = ctx.getImageData(0, 0, canvas.width,
canvas.height);
 var pixels = imageData.data;

 for (var i = 0, il = pixels.length; i < il; i += 4) {
var color = Math.round(Math.random() * 255);

 // Because the noise is monochromatic, we should put the
same value in the R, G and B channels
 pixels[i] = pixels[i + 1] = pixels[i + 2] = color;

 // Make sure pixels are opaque
 pixels[i + 3] = 255;
 }

 // Put pixels back into canvas
 ctx.putImageData(imageData, 0, 0);
}

// Set up canvas
var canvas = document.createElement('canvas');
canvas.width = canvas.height = 200;
document.body.appendChild(canvas);

addNoise(canvas);

Smashing eBook #25│Mastering HTML5│ 37

The result could look like this:

Pretty good for starters. But we can’t just create a noise layer and place it
above the scene image. Rather, we should blend it in “Multiply” mode.

Blend Modes
Anyone who has worked with Adobe Photoshop or any other advanced
image editor knows what layer blend modes are:

Some folks regard image blend modes as some sort of rocket science, but
in most cases the algorithms behind them are pretty simple. For example,
here’s what the Multiply blending algorithm looks like:

(colorA * colorB) / 255

Smashing eBook #25│Mastering HTML5│ 38

That is, we have to multiply two colors (each channel’s value) and divide it by
255.

Let’s modify out code snippet: load the image, generate the noise and apply
it using the “Multiply” blend mode:

// Load image. Waiting for onload event is important
var img = new Image;
img.onload = function() {
addNoise(img);
};
img.src = "stage-bg.jpg";
function addNoise(img) {
 var canvas = document.createElement('canvas');
 canvas.width = img.width;
 canvas.height = img.height;

 var ctx = canvas.getContext('2d');
 // Draw image on canvas to get its pixel data
 ctx.drawImage(img, 0, 0);
 // Get image pixels
 var imageData = ctx.getImageData(0, 0, canvas.width,
canvas.height);
 var pixels = imageData.data;
 for (var i = 0, il = pixels.length; i < il; i += 4) {
 // generate "noise" pixel
 var color = Math.random() * 255;

 // Apply noise pixel with Multiply blending mode for
each color channel
 pixels[i] = pixels[i] * color / 255;
 pixels[i + 1] = pixels[i + 1] * color / 255;
 pixels[i + 2] = pixels[i + 2] * color / 255;
 }
 ctx.putImageData(imageData, 0, 0);
 document.body.appendChild(canvas);
}

Smashing eBook #25│Mastering HTML5│ 39

The result will look like this:

Looks nice, but the noise is very rough. We have to apply transparency to it.

Alpha Compositing
The process of combining two colors with transparency is called “Alpha
compositing.” In the simplest case of compositing, the algorithm would look
like this:

colorA * alpha + colorB * (1 - alpha)

Here, alpha is the composition coefficient (transparency) from 0 to 1.
Choosing which color will be the background (colorB) and which will be
the overlay (colorA) is important. In this case, the background will be the
curtains image, and the noise will be the overlay.

Let’s add one more argument for the addNoise() function, which will
control the alpha blending and modify the main function to respect
transparency while blending images:

Smashing eBook #25│Mastering HTML5│ 40

var img = new Image;
 img.onload = function() {
 addNoise(img, 0.2); // pass 'alpha' argument
};
img.src = "stage-bg.jpg";

function addNoise(img, alpha) { // new 'alpha' argument
 var canvas = document.createElement('canvas');
 canvas.width = img.width;
 canvas.height = img.height;

 var ctx = canvas.getContext('2d');
 ctx.drawImage(img, 0, 0);

 var imageData = ctx.getImageData(0, 0, canvas.width,
canvas.height);
 var pixels = imageData.data, r, g, b;

 for (var i = 0, il = pixels.length; i < il; i += 4) {
 // generate "noise" pixel
 var color = Math.random() * 255;

 // Calculate the target color in Multiply blending mode
without alpha composition
 r = pixels[i] * color / 255;
 g = pixels[i + 1] * color / 255;
 b = pixels[i + 2] * color / 255;

 // alpha compositing
 pixels[i] = r * alpha + pixels[i] * (1 - alpha);
 pixels[i + 1] = g * alpha + pixels[i + 1] * (1 - alpha);
 pixels[i + 2] = b * alpha + pixels[i + 2] * (1 - alpha);
 }

 ctx.putImageData(imageData, 0, 0);
 document.body.appendChild(canvas);
}

Smashing eBook #25│Mastering HTML5│ 41

The result is exactly what we want: a noise layer applied to the background
image in Multiply blending mode, with a transparency of 20%:

Optimization
While the resulting image looks perfect, the performance of this script is
pretty poor. On my computer, it takes about 300 milliseconds (ms). On the
average user’s computer, it could take even longer. So, we have to optimize
this script. Half of the code uses browser API calls such as for creating the
canvas, getting the image data and sending it back, so we can’t do much
with that. The other half is the main loop for applying noise to the stage
image, and it can be perfectly optimized.

Our test image size is 1293×897, which leads to 1,159,821 loop iterations. A
pretty big number, so even small modifications could lead to significant
performance boosts.

Smashing eBook #25│Mastering HTML5│ 42

For example, in this cycle we calculated 1 - alpha three times, but this is
a static value. We should define a new variable outside of the for loop:

var alpha1 = 1 - alpha;

And then we would replace all occurrences of 1 - alpha with alpha1.

Next, for the noise pixel generation, we use the Math.random() * 255
formula. But a few lines later, we divide this value by 255, so r =
pixels[i] * color / 255. Thus, we have no need to multiply and
divide; we just use a random value. Here’s what the main loop looks like
after these tweaks:

var alpha1 = 1 - alpha;
for (var i = 0, il = pixels.length; i < il; i += 4) {
 // generate "noise" pixel
 var color = Math.random();

 // Calculate the target color in Multiply blending mode
without alpha composition
 r = pixels[i] * color;
 g = pixels[i + 1] * color;
 b = pixels[i + 2] * color;

 // Alpha compositing
 pixels[i] = r * alpha + pixels[i] * alpha1;
 pixels[i + 1] = g * alpha + pixels[i + 1] * alpha1;
 pixels[i + 2] = b * alpha + pixels[i + 2] * alpha1;
}

After these little optimizations, the addNoise() function runs at about 240
ms (a 20% boost).

Remember that we have more than a million iterations, so every little bit
counts. In the main loop, we’re accessing the pixels array twice: once for
blending and once for alpha compositing. But array access is too resource-

Smashing eBook #25│Mastering HTML5│ 43

intensive, so we need to use an intermediate variable to store the original
pixel value (i.e. we access the array once per iteration), like so:

var alpha1 = 1 - alpha;
var origR, origG, origB;

for (var i = 0, il = pixels.length; i < il; i += 4) {
 // generate "noise" pixel
 var color = Math.random();

 origR = pixels[i]
 origG = pixels[i + 1];
 origB = pixels[i + 2];

 // Calculate the target color in Multiply blending mode
without alpha composition
 r = origR * color;
 g = origG * color;
 b = origG * color;

 // Alpha compositing
 pixels[i] = r * alpha + origR * alpha1;
 pixels[i + 1] = g * alpha + origG * alpha1;
 pixels[i + 2] = b * alpha + origB * alpha1;
}

This reduces the execution of this function down to 200 ms.

Extreme Optimization
An attentive user would notice that the stage curtains are red. In other
words, the image data is defined in the red channel only. The green and
blue ones are empty, so there’s no need for them in the calculations:

Smashing eBook #25│Mastering HTML5│ 44

for (var i = 0, il = pixels.length; i < il; i += 4) {
 // generate "noise" pixel
 var color = Math.random();

 origR = pixels[i]
 // Calculate the target color in Multiply blending mode
without alpha composition
 r = origR * color;

 // Alpha compositing
 pixels[i] = r * alpha + origR * alpha1;
}

With some high-school algebra, I came up with this formula:

for (var i = 0, il = pixels.length; i < il; i += 4) {
 pixels[i] = pixels[i] * (Math.random() * alpha + alpha1);
}

And the overall execution of the function is reduced to 100 ms, one-third of
the original 300 ms, which is pretty awesome.

The for loop contains just one simple calculation, and you might think that
we can do nothing more. Actually, we can.

During the execution of the loop, we calculate the random pixel value and
apply it to original one. But we don’t need to compute this random pixel on
each iteration (remember, we have more than a million of them!). Rather, we
can pre-calculate a limited set of random values and then apply them to
original pixels. This will work because the generated value is… well, random.
There’s no repeating patterns of special cases — just random data.

The trick is to pick the right value’s array size. It should be large enough to
not produce visible repeating patterns on the image and small enough to be
generated at a reasonable speed. During my experiments, the best random
value’s array length was 3.73 of the image width.

Smashing eBook #25│Mastering HTML5│ 45

Now, let’s generate an array with random pixels and then apply them to
original image:

// Pick the best array length
var rl = Math.round(ctx.canvas.width * 3.73);
var randoms = new Array(rl);

// Pre-calculate random pixels
for (var i = 0; i < rl; i++) {
 randoms[i] = Math.random() * alpha + alpha1;
}

// Apply random pixels
for (var i = 0, il = pixels.length; i < il; i += 4) {
 pixels[i] = pixels[i] * randoms[i % rl];
}

This will cut down the execution time to 80 ms in Webkit browsers and have
a significant boost in Opera. Also, Opera slows down in performance when
the image data array contains float values, so we have to round them with
fast bit-wise OR operator.

The final code snippet looks like this:

var img = new Image;
 img.onload = function() {
 addNoise(img, 0.2); // pass 'alpha' argument
};
img.src = "stage-bg.jpg";

function addNoise(img, alpha) {
 var canvas = document.createElement('canvas');
 canvas.width = img.width;
 canvas.height = img.height;

 var ctx = canvas.getContext('2d');
 ctx.drawImage(img, 0, 0);

Smashing eBook #25│Mastering HTML5│ 46

 var imageData = ctx.getImageData(0, 0, canvas.width,
canvas.height);
 var pixels = imageData.data;
 var alpha1 = 1 - alpha;

 // Pick the best array length
 var rl = Math.round(ctx.canvas.width * 3.73);
 var randoms = new Array(rl);

 // Pre-calculate random pixels
 for (var i = 0; i < rl; i++) {
 randoms[i] = Math.random() * alpha + alpha1;
 }

 // Apply random pixels
 for (var i = 0, il = pixels.length; i < il; i += 4) {
 pixels[i] = (pixels[i] * randoms[i % rl]) | 0;
 }

 ctx.putImageData(imageData, 0, 0);
 document.body.appendChild(canvas);
}

This code executes in about 80 ms on my laptop in Safari 5.1 for an image
that is 1293×897, which is really fast. You can see the result online.

!e Result
In my opinion, the result is pretty good:

• The image size was reduced from 330 KB to 70 KB, plus 1 KB of minified
JavaScript. Actually, the image could be saved at a lower quality
because the noise might hide some JPEG artifacts.

Smashing eBook #25│Mastering HTML5│ 47

http://media.chikuyonok.ru/sm/canvas/
http://media.chikuyonok.ru/sm/canvas/

• This is a perfectly valid progressive enhancement optimization. Users
with modern browsers will see a highly detailed image, while users with
older browsers (such as IE 6) or with JavaScript disabled will still be able
to see the image but with less detail.

The only downside of this approach is that the final image should be
calculated each time the user visits the Web page. In some cases, you can
store the final image as data:url in localStorage and restore it the
next time the page loads. In my case, the size of the final image is 1.24 MB,
so I decided not to store it and instead spend the default 5 MB of local
storage on more useful data.

BLEND MODES PLAYGROUND

I’ve created a small playground that you can use as a starting point for your
experiments and optimizations. It contains most Photoshop blend modes
and opacity control. Feel free to copy any code found on this playground
into your pages.

Conclusion
The technique you’ve just learned can be used in many different ways on
modern Web pages. You don’t need to create many heavy, detailed images
and force users to download them. Highlights, shades, textures and more
can all be generated very quickly right in the user’s browser.

But use this technique wisely. Putting many unoptimized image generators
on a single page could cause the browser to hang for a few seconds. You
shouldn’t use this technique if you don’t really understand how it works or
know what you’re doing. Always prioritize performance ahead of cool
technology.

Smashing eBook #25│Mastering HTML5│ 48

http://media.chikuyonok.ru/canvas-blending/
http://media.chikuyonok.ru/canvas-blending/

Also, note that the curtains image in this article is for demonstration
purposes only. You can achieve almost the same result — a noisy image — 
just by placing a semi-transparent noise texture above the scene image, as
shown in this example. Anyway, the point of this article was to show you
how to enhance images right in the Web browser while keeping their size as
small as possible.

Smashing eBook #25│Mastering HTML5│ 49

http://float-left.ru/im/
http://float-left.ru/im/

Syncing Content With HTML5 Video
One of the main changes from HTML4 to HTML5 is that the new
specification breaks a few of the boundaries that browsers have been
confined to. Instead of restricting user interaction to text, links, images and
forms, HTML5 promotes multimedia, from a generic <object> element to a
highly specified <video> and <audio> element, and with a rich API to
access in pure JavaScript.

Native multimedia capability has a few benefits:

• End users have full control over the multimedia.
The native controls of browsers allow users to save videos locally or
email them to friends. Also, HTML5 video and audio are keyboard-
enabled by default, which is a great accessibility benefit.

• End users do not need to install a plug-in to play them.
The browser already has everything it needs to play movies and sound.

• Video and audio content on the page can be manipulated.
They are simply two new elements like any other that can be styled,
moved, manipulated, stacked and rotated.

• You can build your own controls using HTML, CSS and JavaScript.
No new skills or development environment needed.

• Interaction with the rest of the page is simple.
The multimedia API gives you full control over the video, and you can
make the video react both to changes in the video itself and to the page
around it.

Let’s quickly recap how you can use native video in the browser, starting
with the embedding task.

Smashing eBook #25│Mastering HTML5│ 50

Embedding Video
This is old news. Embedding video in a document is as easy as adding a
<video> element and pointing it to the source video. Adding a controls
attribute gives you native controls:

<video src="chris.ogv" controls></video>

This is the theory, though. In the real world of intellectual property, corporate
competition and device-specific solutions, we as developers have to jump
through a few hoops:

<video controls="true" height="295" width="480">
 <!-- hello iOS, Safari and IE9 -->
 <source src="chris.mp4" type="video/mp4">
 <!-- Hello Chrome and Firefox (and Opera?) -->
 <source src="chris.webm" type="video/webm">
 <!-- Hello Firefox and Opera -->
 <source src="chris.ogv" type="video/ogg">
 <!-- Hello legacy -->
 Your browser does not support the video tag,

 check the video on YouTube
 .
</video>

This shows how we need to deliver video in three formats in order to satisfy
all of the different browsers out there. There are a few ways to accomplish
this. Here’s what I do…

Smashing eBook #25│Mastering HTML5│ 51

http://www.youtube.com/watch?v=IhkUe_KryGY
http://www.youtube.com/watch?v=IhkUe_KryGY

Convert Video With Miro Video Converter
Miro Video Converter is an open-source tool for Mac that makes converting
videos dead easy. Simply drag the video to the tool, select WebM as the
output format, and watch the progress. A few other converters for Windows
and Linux are available, too.

Smashing eBook #25│Mastering HTML5│ 52

http://www.mirovideoconverter.com/
http://www.mirovideoconverter.com/
http://www.webmproject.org/tools/
http://www.webmproject.org/tools/
http://www.webmproject.org/tools/
http://www.webmproject.org/tools/
http://www.mirovideoconverter.com/
http://www.mirovideoconverter.com/

Hosting And Automated Conversion On Archive.org
Because I license my videos with Creative Commons, I can use Archive.org
to both host the videos and convert the WebM versions to MP4 and OGV.
Simply upload your video and wait about an hour. Reload the page, and the
server pixies at Archive.org will have created the other two formats (and also
a cool animated GIF of your video).

You can use Archive.org to both host the videos and convert the WebM versions
to MP4 and OGV.

Smashing eBook #25│Mastering HTML5│ 53

http://creativecommons.org/
http://creativecommons.org/
http://archive.org/
http://archive.org/
http://media.smashingmagazine.com/wp-content/uploads/2011/02/archiveorg.png
http://media.smashingmagazine.com/wp-content/uploads/2011/02/archiveorg.png
http://www.archive.org/
http://www.archive.org/

Industrial-Strength Conversion With Vid.ly
WebM, OGV and MP4 take care of only the major browsers, though. If you
want to support all mobile devices, tablets and consoles and you want the
video quality to adapt to the user’s connection speed, then you’ll have to
create a few dozen versions of the same video. Encoding.com feels our pain
and has released a free service called Vid.ly, which converts any video you
upload into many different formats more or less in real time. Unfortunately,
the service is in private beta at the moment, but you can use the invite code
HNY2011.

Vid.ly converts any video you upload into many different formats more or less in
real time.

Smashing eBook #25│Mastering HTML5│ 54

http://vid.ly/
http://vid.ly/
http://vid.ly/
http://vid.ly/
http://vid.ly/
http://vid.ly/

Furthermore, Vid.ly creates a URL for your video that automatically redirects
the browser or device calling it to the right format. This keeps your embed
code as simple as possible:

<video src="http://vid.ly/4f3q1f?content=video" controls>
</video>

Cool, isn’t it?

!e Power Of !e HTML5 Video API: Syncing Content
Now that our video is on the page, let’s check out the power of the API. Say,
for example, you want to know what part of the movie is playing right now.
This is as simple as subscribing to an event of the <video> element:

<div id="stage">
 <video src="http://vid.ly/4f3q1f?content=video" controls></
video>
 <div id="time"></div>
</div>
<script>
 (function(){
 var v = document.getElementsByTagName('video')[0]
 var t = document.getElementById('time');
 v.addEventListener('timeupdate',function(event){
 t.innerHTML = v.currentTime;
 },false);
 })();
</script>

If you try this out in your browser, you will see the current time below the
video when you play it.

Smashing eBook #25│Mastering HTML5│ 55

http://vid.ly/4f3q1f?content=video
http://vid.ly/4f3q1f?content=video
http://vid.ly/4f3q1f?content=video
http://vid.ly/4f3q1f?content=video
http://isithackday.com/syncing-video/play.html
http://isithackday.com/syncing-video/play.html

You will also see that the timeupdate event gets fired a lot and at
somewhat random times. If you want to use this to sync the showing and
hiding of parts of the document, then you’ll need to throttle it somehow. The
easiest way to do this is to limit the number to full seconds using
parseInt():

<div id="stage">
 <video src="http://vid.ly/4f3q1f?content=video" controls></
video>
 <div id="time"></div>
</div>
<script>
 (function(){
 var v = document.getElementsByTagName('video')[0]
 var t = document.getElementById('time');
 v.addEventListener('timeupdate',function(event){
 t.innerHTML = parseInt(v.currentTime) + ' - ' +
v.currentTime;

Smashing eBook #25│Mastering HTML5│ 56

http://isithackday.com/syncing-video/play.html
http://isithackday.com/syncing-video/play.html
http://isithackday.com/syncing-video/playfullsecond.html
http://isithackday.com/syncing-video/playfullsecond.html
http://vid.ly/4f3q1f?content=video
http://vid.ly/4f3q1f?content=video

 },false);
 })();
</script>

You can use this to trigger functionality at certain times. For example, you
can sync an Indiana Jones-style animation of a map to a video.

For a full explanation of this demo, check out the blog post on Mozilla
Hacks.

Let’s have a go at something similar: a video that shows the content from
web pages being referred to by a presenter. Check out this video demo of
me explaining what we’re doing here, with the content appearing and
disappearing at certain times in the video. Make sure to jump around the
video with the controls.

Smashing eBook #25│Mastering HTML5│ 57

http://isithackday.com/syncing-video/playfullsecond.html
http://isithackday.com/syncing-video/playfullsecond.html
http://isithackday.com/spirit-of-indiana/
http://isithackday.com/spirit-of-indiana/
http://hacks.mozilla.org/2010/12/spirit-of-indiana-jones-syncing-html5-video-with-maps/
http://hacks.mozilla.org/2010/12/spirit-of-indiana-jones-syncing-html5-video-with-maps/
http://hacks.mozilla.org/2010/12/spirit-of-indiana-jones-syncing-html5-video-with-maps/
http://hacks.mozilla.org/2010/12/spirit-of-indiana-jones-syncing-html5-video-with-maps/
http://isithackday.com/syncing-video/
http://isithackday.com/syncing-video/
http://isithackday.com/syncing-video/
http://isithackday.com/syncing-video/

We’ve already covered how to get the current time of a video in seconds.
What I want now is to display and hide a few parts of the website at certain
times in the video. If video is not supported in the browser, then I would just
show all of the content without any syncing.

The first issue I have to solve is to allow the maintainer to control what is
shown when. Normally, I’d use a JSON object in the JavaScript, but I figure
that keeping the maintenance in the markup itself makes much more sense.

HTML5 allows you to store information in data- attributes. So, to make it
easy to tell the script when to show what, I just use data-start and
data-end attributes, which define the time frames for the articles that I
want to sync with the video:

Smashing eBook #25│Mastering HTML5│ 58

http://isithackday.com/syncing-video/
http://isithackday.com/syncing-video/
http://isithackday.com/syncing-video/allarticles.html
http://isithackday.com/syncing-video/allarticles.html

<article data-start="64" data-end="108">
 <header><h1>Archive.org for conversion</h1></header>
 <p>Archive.org is a website
dedicated to
archiving the Internet. For content released as under a
Creative Commons
license, it offers hosting for video and audio and
automatically converts the
content to MP4 and Ogg video for you.</p>
 <iframe src="http://archive.org"></iframe>
</article>

You can try it out by downloading the code and changing the values
yourself (or use Firebug or the Web Inspector to change it on the fly).

Here’s the script (using jQuery) that makes this happen:

/* if the document is ready… */
$(document).ready(function(){

/* if HTML5 video is supported */
 if($('video').attr('canPlayType')){

 $('aside::first').append('<p>Play the video above and see
how ' +
 'the different connected content
sections ' +
 'in the page appear at the right
moment. '+
 'Feel free to jump forward and
backward</p>');

 var timestamps = [],
 last = 0,
 all = 0,
 now = 0,
 old = 0,

Smashing eBook #25│Mastering HTML5│ 59

http://archive.org
http://archive.org
http://archive.org
http://archive.org
https://github.com/codepo8/Syncing-Video
https://github.com/codepo8/Syncing-Video

 i=0;

/* hide all articles via CSS */
 $('html').addClass('js');

/*
 Loop over the articles, read the timestamp start and end
and store
 them in an array
*/
 $('article').each(function(o){
 if($(this).attr('data-start')){
 timestamps.push({
 start : +$(this).attr('data-start'),
 end : +$(this).attr('data-end'),
 elm : $(this)
 });
 }
 });

 all = timestamps.length;

/*
 when the video is playing, round up the time to seconds and
call the
 showsection function continuously
*/
 $('video').bind('timeupdate',function(event){
 now = parseInt(this.currentTime);

 /* throttle function calls to full seconds */
 if(now > old){
 showsection(now);
 }
 old = now;

 });

Smashing eBook #25│Mastering HTML5│ 60

/*
 Test whether the current time is within the range of any of
the
 defined timestamps and show the appropriate section.
 Hide all others.
*/
 function showsection(t){
 for(i=0;i<all;i++){
 if(t >= timestamps[i].start && t <= timestamps[i].end)
{
 timestamps[i].elm.addClass('current');
 } else {
 timestamps[i].elm.removeClass('current');
 }
 }
 };

 };
});

So, what’s going on here? First, we’re checking whether the browser is
capable of playing HTML5 video by testing for the canPlayType attribute.
If all is fine, then we add some explanatory text to the document (which
wouldn’t make sense if the browser couldn’t show a video). Then, we define
some variables to use and add a class of js to the root element of the
document. This, together with the .js article selector in the CSS, hides
all of the articles in the document.

We then loop through the articles, read out the timestamps for the start and
end of each of the sections and store them in an array called timestamps.

We then subscribe to the timeupdate event, rounded up to full seconds,
and call the showsection() function every new second.

Smashing eBook #25│Mastering HTML5│ 61

The showsection() function loops through all of the timestamps and tests
whether the current time of the video is in the range of one of the articles. If
it is, then that article is displayed (by adding a current class) and all the
others are hidden. This could be optimized by storing the current section
and removing the class from only that element.

Can We Do !e Same With Less Or No Code?
If you like the idea of syncing content and video, check out the Popcorn
framework, which is based on the same techniques but gives you much
more control over the video itself.

Smashing eBook #25│Mastering HTML5│ 62

http://popcornjs.org/
http://popcornjs.org/
http://popcornjs.org/
http://popcornjs.org/
http://popcornjs.org/
http://popcornjs.org/

Butter is a point-and-click interface to go on top of Popcorn. It has a nice
timeline editor that allows you to play a video and show all kinds of Web
content at certain times. You can export and send your creations to friends,
too.

With systems like Popcorn and Butter, we are one step closer to having
authoring tools for the rich interactions that HTML5 offers us. What can you
think of building?

Smashing eBook #25│Mastering HTML5│ 63

http://popcornjs.org/butter/
http://popcornjs.org/butter/
http://popcornjs.org/butter/
http://popcornjs.org/butter/

Summary
Today we looked at how to embed video onto a Web document; and with
the native video API that gives us event handlers for changes in a video, we
saw how easy it is to make the video interact with the rest of the document.
Instead of trying to control the video, we use native controls to make the
page react to what is happening in the video itself. We used semantic HTML
and data attributes to allow maintainers to use the syncing script without
having to touch any JavaScript, and we looked at some services that make
hosting and converting video easy.

All of these cool technologies give us a lot of power, but we can’t just, say,
write some simple CSS, JavaScript and HTML to use them. If we want open
technologies to succeed, then we have to make them easy for people to
use. The next step now is to move from the “one-off implementation” phase
and think about creating tools and step-by-step code-creation systems for
users who want to use these cool new technologies but don’t want to spend
much time and effort doing it.

With native audio and video in browsers, we’ve taken a massive step toward
make the open Web more engaging and beautiful. The next step will be to
use multimedia not only for output but for input. A lot of hardware these
days comes with cameras and microphones; we need to start using and
supporting open technology that allows our users to take advantage of this
hardware to interact with our Web products.

Smashing eBook #25│Mastering HTML5│ 64

Behind !e Scenes Of Nike Be#er World
By Richard Shepherd

Perhaps one of the most talked about websites in the last 12 months has
been Nike Better World. It’s been featured in countless Web design
galleries, and it still stands as an example of what a great idea and some
clever design and development techniques can produce.

In this article, we’ll talk to the team behind Nike Better World to find out how
the website was made. We’ll look at exactly how it was put together, and
then use similar techniques to create our own parallax scrolling website.
Finally, we’ll look at other websites that employ this technique to hopefully
inspire you to build on these ideas and create your own variation.

Smashing eBook #25│Mastering HTML5│ 65

http://www.nikebetterworld.com/
http://www.nikebetterworld.com/

Nike Be#er World

Nike Better World is a glimpse into how Nike’s brand and products are
helping to promote sports and its benefits around the world. It is a website
that has to be viewed in a browser (preferably a latest-generation browser,
although it degrades well) rather than as a static image, because it uses
JavaScript extensively to create a parallax scrolling effect.

A good deal of HTML5 is used to power this immersive brand experience
and, whatever your views on Nike and its products, this website has clearly

Smashing eBook #25│Mastering HTML5│ 66

http://www.nikebetterworld.com/
http://www.nikebetterworld.com/

been a labor of love for the agency behind it. Although parallax scrolling
effects are nothing new, few websites have been able to sew together so
many different design elements so seamlessly. There is much to learn here.

AN “INTERACTIVE STORYTELLING EXPERIENCE”

In our opinion, technologies are independent of concept. Our primary
focus was on creating a great interactive storytelling experience.
– Wieden+Kennedy

Nike turned to long-time collaborator Wieden+Kennedy (W+K), one of the
largest independent advertising agencies in the world, to put together a
team of four people who would create Nike Better World: Seth Weisfeld was
the interactive creative director, Ryan Bolls produced, while Ian Coyle and
Duane King worked on the design and interaction.

Smashing eBook #25│Mastering HTML5│ 67

http://twitter.com/#!/seth_weisfeld
http://twitter.com/#!/seth_weisfeld
http://www.iancoyle.com/
http://www.iancoyle.com/
http://twitter.com/#!/duaneking
http://twitter.com/#!/duaneking

I started by asking the team whether the initial concept for the website
pointed to the technologies they would use. As the quote above reveals,
they in fact always start by focusing on the concept. This is a great point.
Too many of us read about a wonderful new technique and then craft an
idea around it. W+K walk in the opposite direction: they create the idea first,
and sculpt the available technologies around it.

So, with the concept decided on, did they consciously do the first build as an
“HTML5 website,” or did this decision come later?

There were some considerations that led us to HTML5. We knew we
wanted to have a mobile- and tablet-friendly version. And we liked the
idea of being able to design and build the creative only once to reach
all the screens we needed to be on. HTML5 offered a great balance of
creativity and technology for us to communicate the Nike Better World
brand message in a fresh and compelling way.
— W+K

HTML5 is still not fully supported in all browsers (read “in IE”) without
JavaScript polyfills, so just how cross-browser compatible did the website
have to be?

The primary technical objectives were for the site to be lightweight,
optimized for both Web and devices, as well as to be scalable for future
ideas and platforms.
— W+K

To achieve these goals, the website leans on JavaScript for much of the
interactivity and scrolling effects. Later, we’ll look at how to create our own

Smashing eBook #25│Mastering HTML5│ 68

parallax scrolling effect with CSS and jQuery. But first, we should start with
the template and HTML.

THE STARTING BOILERPLATE

It’s worth pointing out the obvious first: Nike Better World is original work
and should not be copied. However, we can look at how the website was
put together and learn from those techniques. We can also look at other
websites that employ parallax scrolling and then create our own page, with
our own code and method, and build on these effects.

I asked W+K if it starts with a template.

We started without a framework, with only reset styles. In certain cases,
particularly with experimental interfaces, it ensures that complete
control of implementation lies in your hands.
— W+K

If you look through some of the code on Nike Better World, you’ll see some
fairly advanced JavaScript in a class-like structure. However, for our
purposes, let’s keep things fairly simple and rely on HTML5 Boilerplate as
our starting point.

Download HTML5 Boilerplate. The “stripped” version will do. You may want
to delete some files if you know you won’t be using them (crossdomain.xml,
the test folder, etc.).

As you’ll see from the source code (see the final code below), our page is
made up of four sections, all of which follow a similar pattern. Let’s look at
one individual section:

Smashing eBook #25│Mastering HTML5│ 69

http://html5boilerplate.com/
http://html5boilerplate.com/

<section class="story" id="first" data-speed="8" data-
type="background">
 <div data-type="sprite" data-offsetY="950" data-
Xposition="25%" data-speed="2"></div>
 <article>
 <h2>Background Only</h2>
 <div>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </article>
</section>

I’m not sure this is the best, most semantic use of those HTML5 tags, but it’s
what we need to make this effect work. Normally, a section has a heading,
so, arguably, the section should be a div and the article should be a section.
However, as W+K points out, the HTML5 spec is still young and open to
interpretation:

HTML5 is still an emerging standard, particularly in implementation. A
lot of thought was given to semantics. Some decisions follow the HTML5
spec literally, while others deviate. As with any new technology, the first
to use it in real-world projects are the ones who really shape it for the
future.
— W+K

This is a refreshing interpretation. Projects like Nike Better World are an
opportunity to “reality check” an emerging standard and, for
the conscientious among us, to provide feedback on the spec.

Smashing eBook #25│Mastering HTML5│ 70

In short, is the theory of the spec practical? W-K elaborates:
We use the article tag for pieces of content that can (and should) be
individually (or as a group) syndicated. Each “story” is an article. We
chose divs to wrap main content. We took the most liberty with the
section tag, as we feel its best definition in the spec is as chapters of
content, be it globally.
— W+K

As an aside (no pun intended!), HTML5 Doctor has begun a series of mark-
up debates called Simplequizes, which are always interesting and illustrate
that there is rarely one mark-up solution for any problem. Make sure to
check them out.

In style.css, we can add a background to our section with the following
code:

section { background: url(../images/slide1a.jpg) 50% 0 no-
repeat fixed; }

We should also give our sections a height and width, so that the background
images are visible:

.story { height: 1000px; padding: 0; margin: 0; width: 100%;
max-width: 1920px; position: relative; margin: 0 auto; }

I’ve set the height of all our sections to 1000 pixels, but you can change this
to suit your content. You can also change it on a per-section basis.

We have also made sure that the maximum width of the section is the
maximum width of the background (1920 pixels), and we have specified a
relative position so that we can absolutely position its children.

Here’s the page before adding JavaScript. It’s worth digging into the source
code to see how we’ve duplicated the sections in the HTML and CSS.

Smashing eBook #25│Mastering HTML5│ 71

http://html5doctor.com/html5-simplequiz-6-zeldmans-fat-footer/
http://html5doctor.com/html5-simplequiz-6-zeldmans-fat-footer/
http://www.richardshepherd.com/smashing/parallax/background.html
http://www.richardshepherd.com/smashing/parallax/background.html

Even with this code alone, we already have a pleasing effect as we scroll
down the page. We’re on our way.

THE HTML5 DATA ATTRIBUTE

Before looking at parallax scrolling, we need to understand the new data
attribute, which is used extensively throughout the HTML above.

Back in the good old days, we would shove any data that we wanted to be
associated with an element into the rel attribute. If, for example, we
needed to make the language of a story’s content accessible to JavaScript,
you might have seen mark-up like this:

<article class='story' id="introduction" rel="en-us">
</article>

Smashing eBook #25│Mastering HTML5│ 72

Sometimes complex DOM manipulation requires more information than a
rel can contain, and in the past I’ve stuffed information into the class
attribute so that I could access it. Not any more!

The team at W+K had the same issue, and it used the data attribute
throughout Nike Better World:

The data attribute is one of the most important attributes of HTML5. It
allowed us to separate mark-up, CSS and JavaScript into a much
cleaner workflow. Websites such as this, with high levels of interaction,

are almost application-like behind the scenes, and the data attribute
allows for a cleaner application framework.
— W+K

Smashing eBook #25│Mastering HTML5│ 73

So, what is the data attribute? You can read about it in the official spec,
which defines it as follows:

Custom data attributes are intended to store custom data private to the
page or application, for which there are no more appropriate attributes
or elements.
— W+K

In other words, any attribute prefixed with data- will be treated as storage for
private data; it does not affect the mark-up, and the user cannot see it. Our
previous example can now be rewritten as:

<article class='story' id="introduction" data-language="en-
us"></article>

The other good news is that you can use more than one data attribute per
element, which is exactly what we’re doing in our parallax example. You may
have spotted the following:

<div data-type="sprite" data-offsetY="100" data-
Xposition="50%" data-speed="2"></div>

Here, we are storing four pieces of information: the x and y data offsets and
the data speed, and we are also marking this element as a data type. By
testing for the existence of data-type in the JavaScript, we can now
manipulate these elements as we wish.

Parallax Scrolling
On our page, three things create the parallax scrolling illusion:

Smashing eBook #25│Mastering HTML5│ 74

http://dev.w3.org/html5/spec/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
http://dev.w3.org/html5/spec/elements.html#embedding-custom-non-visible-data-with-the-data-attributes

• The background scrolls at the slowest rate,

• Any sprites scroll slightly faster than the background,

• Any section content scrolls at the same speed as the window.

With three objects all scrolling at different speeds, we have created a
beautiful parallax effect.

It goes without saying that we don’t need to worry about the third because
the browser will take care of that for us! So, let’s start with the background
scroll and some initial jQuery.

Smashing eBook #25│Mastering HTML5│ 75

$(document).ready(function(){
 // Cache the Window object
 $window = $(window);
// Cache the Y offset and the speed
$('[data-type]').each(function() {
 $(this).data('offsetY', parseInt($(this).attr('data-
offsetY')));
 $(this).data('speed', $(this).attr('data-speed'));
});
// For each element that has a data-type attribute
 $('section[data-type="background"]').each(function(){
 // Store some variables based on where we are
 $(this).data('speed', parseInt($(this).attr('data-speed')));
 var $self = $(this),
 offsetCoords = $self.offset(),
 topOffset = offsetCoords.top;
 $(window).scroll(function(){
 // The magic will happen in here!
 }); // window scroll
 }); // each data-type
}); // document ready

First, we have our trusty jQuery document ready function, to ensure that
the DOM is ready for processing. Next, we cache the browser window
object, which we will refer to quite often, and call it $window. (I like to prefix
jQuery objects with $ so that I can easily see what is an object and what is a
variable.)

We also use the jQuery .data method to attach the Y offset (explained
later) and the scrolling speed of the background to each element. Again, this
is a form of caching that will speed things up and make the code more
readable.

Smashing eBook #25│Mastering HTML5│ 76

We then iterate through each section that has a data attribute of data-
type="background" with the following:

$('section[data-type="background"]').each(function(){}

Already we can see how useful data attributes are for storing multiple pieces
of data about an object that we wish to use in JavaScript.

Inside the .each function, we can start to build up a picture of what needs
to be done. For each element, we need to grab some variables:

// Store some variables based on where we are
var $self = $(this),
 offsetCoords = $self.offset(),
 topOffset = offsetCoords.top;

We cache the element as $self (again, using the $ notation because it’s a
jQuery object). Next, we store the offset() of the element in
offsetCoords and then grab the top offset using the .top property of
offset().

Finally, we set up the window scroll event, which fires whenever the user
moves the scroll bar or hits an arrow key (or moves the trackpad or swipes
their finger, etc.).

We need to do two more things: check that the element is in view and, if it is,
scroll it. We test whether it’s in view using the following code:

// If this section is in view
if (($.Window.scrollTop() + $.Window.height()) >
($offsetCoords.top) &&
(($offsetCoords.top + $self.height()) >
$.Window.scrollTop())) {
}

Smashing eBook #25│Mastering HTML5│ 77

The first condition checks whether the very top of the element has scrolled
into view at the very bottom of the browser window.

The second condition checks whether the very bottom of the element has
scrolled past the very top of the browser window.

You could use this method to check whether any element is in view. It’s
sometimes useful (and quicker) to process elements only when the user can
see them, rather than when they’re off screen.

So, we now know that some part of the section element with a data-type
attribute is in view. We can now scroll the background. The trick here is to
scroll the background slower or faster than the browser window is scrolling.
This is what creates the parallax effect.

Here’s the code:

// Scroll the background at var speed
// the yPos is a negative value because we're scrolling it UP!
var yPos = -($window.scrollTop() / $self.data('speed'));

// If this element has a Y offset then add it on
if ($self.data('offsetY')) {
 yPos += $self.data('offsetY');
}

// Put together our final background position
var coords = '50% '+ yPos + 'px';

// Move the background
$self.css({ backgroundPosition: coords });

The y position is calculated by dividing the distance that the user has
scrolled from the top of the window by the speed. The higher the speed, the
slower the scroll.

Smashing eBook #25│Mastering HTML5│ 78

Next, we check whether there is a y offset to apply to the background.
Because the amount that the background scrolls is a function of how far the
window has scrolled, the further down the page we are, the more the
background has moved. This can lead to a situation in which the
background starts to disappear up the page, leaving a white (or whatever
color your background is) gap at the bottom of each section.

The way to combat this is to give those backgrounds an offset that pushes
them down the page an extra few hundred pixels. The only way to find out
this magic offset number is by experimenting in the browser. I wish it was
more scientific than this, but this offset really does depend on the height of
the browser window, the distance scrolled, the height of your sections and
the height of your background images. You could perhaps write some
JavaScript to calculate this, but to me this seems like overkill. Two minutes
experimenting in Firebug yields the same result.

The next line defines a variable coords to store the coordinates of the
background. The x position is always the same: 50%. This was the value we
set in the CSS, and we won’t change it because we don’t want the element
to scroll sideways. Of course, you’re welcome to change it if you want the
background to scroll sideways as the user scrolls up, perhaps to reveal
something.

(Making the speed a negative number for slower scrolling might make more
sense, but then you’d have to divide by -$speed. Two negatives seems a
little too abstract for this simple demonstration.)

Finally, we use the .css method to apply this new background position. Et
voila: parallax scrolling!

Smashing eBook #25│Mastering HTML5│ 79

Here’s the code in full:

// Cache the Window object
$window = $(window);

// Cache the Y offset and the speed of each sprite
$('[data-type]').each(function() {
 $(this).data('offsetY', parseInt($(this).attr('data-
offsetY')));
 $(this).data('speed', $(this).attr('data-speed'));
});

// For each element that has a data-type attribute
$('section[data-type="background"]').each(function(){

// Store some variables based on where we are
var $self = $(this),
 offsetCoords = $self.offset(),
 topOffset = offsetCoords.top;

$(window).scroll(function(){

// If this section is in view
if (($window.scrollTop() + $window.height()) > (topOffset) &&
((topOffset + $self.height()) > $window.scrollTop())) {

 // Scroll the background at var speed
 // the yPos is a negative value because we're scrolling it
UP!
 var yPos = -($window.scrollTop() / $self.data('speed'));

 // If this element has a Y offset then add it on
 if ($self.data('offsetY')) {
 yPos += $self.data('offsetY');
 }

 // Put together our final background position

Smashing eBook #25│Mastering HTML5│ 80

 var coords = '50% '+ yPos + 'px';

 // Move the background
 $self.css({ backgroundPosition: coords });

 }; // in view

}); // window scroll

}); // each data-type

Of course, what we’ve done so far is quite a bit simpler than what’s on Nike
Better World. W+K admits that the parallax scrolling threw it some
challenges:

The parallax scrolling presented a few small challenges in cross-
browser compatibility. It took a little experimenting to ensure the best
scrolling experience. In the end, it was less about the actual parallax
effect and more about synchronized masking of layers during
transitions.
— W+K

W+K also reveals how it maintained a fast loading and paint speed by
choosing its tools wisely:

The key to maintaining faster speeds is to use native CSS where
possible, because DOM manipulation slows down rendering, particularly
on older browsers and processors.
— W+K

Smashing eBook #25│Mastering HTML5│ 81

For example, the “More” button below spins on hover, an effect achieved
with CSS3. In browsers that don’t support CSS3 transforms, the purpose of
the graphic is still obvious.

ADDING MORE ELEMENTS

Of course, one of the other common features of parallax scrolling is that
multiple items on the page scroll. So far, we have two elements that move
independently of each other: the first is the page itself, which scrolls when
the user moves the scroll bar, and the second is the background, which now
scrolls at at slower rate thanks to the jQuery above and the background-
position CSS attribute.

For many pages, this would be enough. It would be a lovely effect for the
background of, say, a blog. However, Nike and others push it further by

Smashing eBook #25│Mastering HTML5│ 82

adding elements that move at a different speed than that of the page and
background. To make things easy — well, easier — I’m going to call these
new elements sprites.

Here’s the HTML:

<div id="smashinglogo" data-type="sprite" data-offsetY="1200"
data-Xposition="25%" data-speed="2"></div>

Put this just before the closing </article> tag, so that it appears behind
the contents of <article>. First, we give the div an id so that we can refer
to it specifically in the CSS. Then we use our HTML5 data attribute to store
a few values:

• The status of a sprite,

• A y (vertical) offset of 1200 pixels,

• An x (horizontal) position as a percentage,

• A scrolling speed.

We give the x position of the sprite a percentage value because it is relative
to the size of the viewport. If we gave it an absolute value, which you’re
welcome to try, there’s a chance it could slide out of view on either the left
or right side.

Now about that y offset…

INCEPTION

This is the bit that’s going to mess with your noodle and is perhaps the
hardest part of the process to grasp.

Smashing eBook #25│Mastering HTML5│ 83

Thanks to the logic in the JavaScript, the sprite won’t move until the parent
section is in view. When it does move, it will move at (in this case) half the
speed. You need the vertical position, then, to account for this slower
movement; elements need to be placed higher up if they will be scrolling
more slowly and, therefore, moving less on the y axis.

We don’t know how far the user has to scroll before the section appears at
the bottom of the page. We could use JavaScript to read the viewport size
and then do some calculations based on how far down the page the section
is positioned. But that is already sounding too complicated. There is an
easier way.

What we do know is how far the user has scrolled before the current section
is flush with the top of the viewport: they have scrolled the y offset of that
particular section. (Put another way, they have scrolled the height of all of
the elements above the current one.)

So, if there are four sections, each 1000 pixels high, and the third section is
at the top of the viewport, then the user must have scrolled 2000 pixels,
because this is the total height of the preceding sections.

If we want our sprite to appear 200 pixels from the top of its parent section,
you’d figure that the total vertical offset we give it should be 2200 pixels.
But it’s not, because this sprite has speed, and this speed (in our example) is
a function of how far the page has been scrolled.

Let’s assume that the speed is set as 2, which is half the speed at which the
page is scrolling. When the section is fully in view, then the window has
scrolled 2000 pixels. But we divide this by the speed (2) to get 1000
pixels. If we want the sprite to appear 200 pixels from the top, then we need
to add 200 to 1000, giving us 200 pixels. Therefore, the offset is 1200. In
the JavaScript, this number is inverted to -1200 because we are pushing the
background-position down off the bottom of the page.

Smashing eBook #25│Mastering HTML5│ 84

Here’s a sketch to show this in action.

This is one of those concepts that is easier to understand when you view the
page and source code and scroll around with the console open in Firebug or
Developer Tools.

The JavaScript looks like this:

// Check for other sprites in this section
$('[data-type="sprite"]', $self).each(function() {

 // Cache the sprite
 $sprite = $(this);

 // Use the same calculation to work out how far to scroll
the sprite

Smashing eBook #25│Mastering HTML5│ 85

 var yPos = -($.Window.scrollTop() / $sprite.data('speed'));
 var coords = $sprite.data('Xposition') + ' ' + (yPos +
$sprite.data('offsetY')) + 'px';
 $sprite.css({ backgroundPosition: coords });
}); // sprites

HTML5 VIDEO

One criticism levelled at Nike Better World is that it didn’t use HTML5 video.
HTML5 is still not fully supported across browsers (I’m looking at you,
Internet Explorer), but for the purposes of this article, we’ll embrace HTML5
video, thanks to the lovely folks at Vimeo and Yum Yum London.

But we can’t set a video as a background element, so we have a new
challenge: how to position and scroll this new sprite?

Well, there are three ways:

1. We could change its margin-top property within its parent section;

2. We could make it a position: absolute element and change its
top property when its parent section comes into view;

3. We could define it as position: fixed and set its top property
relative to the viewport.

Because we already have code for the third, let’s grab the low-hanging fruit
and adapt it to our purposes.

Here’s the HTML we’ll use, which I’ve placed after the closing </article>
tag:

Smashing eBook #25│Mastering HTML5│ 86

http://vimeo.com/14592941
http://vimeo.com/14592941
http://www.yumyumlondon.com/
http://www.yumyumlondon.com/

<video controls width="480" width="320" data-type="video"
data-offsetY="2500" data-speed="1.5">
 <source src="video/parallelparking.theora.ogv" type="video/
ogg" />
 <source src="video/parallelparking.mp4" type="video/mp4" />
 <source src="video/parallelparking.webm" type="video/webm" /
>
</video>

First, we’ve opened our HTML5 video element and defined its width and
height. We then set a new data-type state, video, and defined our y
offset and the speed at which the element scrolls. It’s worth nothing that
some experimentation is needed here to make sure the video is positioned
correctly. Because it’s a position: fixed element, it will scroll on top of
all other elements on the page. You can’t cater to every viewport at every
screen resolution, but you can play around to get the best compromise for
all browser sizes (See “Bespoke to Broke” below).

The CSS for the video element looks like this:

video { position: fixed; left: 50%; z-index: 1;}

I’ve positioned the video 50% from the left so that it moves when the
browser’s size is changed. I’ve also given it a z-index: 1. This z-index
prevents the video element from causing rendering problems with
neighboring sections.

And now for the JavaScript! This code should be familiar to you:

Smashing eBook #25│Mastering HTML5│ 87

// Check for any Videos that need scrolling
$('[data-type="video"]', $self).each(function() {

 // Cache the sprite
 $video = $(this);

 // Use the same calculation to work out how far to scroll
the sprite
 var yPos = -($window.scrollTop() / $video.data('speed'));
 var coords = (yPos + $video.data('offsetY')) + 'px';
 $video.css({ top: coords });
}); // video

And there you have it! A parallax scrolling HTML5 video.

BESPOKE OR BROKE

Of course, every design is different, which means that your code for your
design will be unique. The JavaScript above will plug and play, but you will
need to experiment with values for the y offset to get the effect you want.
Different viewport sizes means that users will scroll different amounts to get
to each section, and this in turn affects how far your elements scroll. I can’t
control it any more than you can, so you have to pick a happy medium. Even
Nike Better World suffers when the viewport’s vertical axis stretches beyond
the height of the background images.

I asked W+K how it decides which effects to power with JavaScript and
which are better suited to modern CSS techniques:

Smashing eBook #25│Mastering HTML5│ 88

Key points that required complex interaction relied on JavaScript, while
visual-only interactivity relied on CSS3. Additionally, fewer browsers
support native CSS3 techniques, so items that were more important to
cross-browser compatibility were controlled via JavaScript as well.
— W+K

This is a wonderful example of “real-world design.” So often we are
bamboozled with amazing new CSS effects, and we make websites that
sneer at older browsers. The truth is, for most commercial websites and
indeed for websites like Nike Better World that target the biggest audience
possible, stepping back and considering how best to serve your visitors is
important.

W+K explains further:

We started by creating the best possible version, but always kept the
needs of all browsers in mind. Interactive storytelling must balance
design and technology to be successful. A great website usable in one
or two browsers ultimately fails if you want to engage a wide audience.
— W+K

And Internet Explorer?!

IE was launched in tandem with the primary site. Only IE6 experienced
challenges, and as a deprecated browser, it gracefully degrades.
— W+K

Smashing eBook #25│Mastering HTML5│ 89

!e Final Code
The code snippets in this piece hopefully go some way to explaining the
techniques required for a parallax scrolling effect. You can extend them
further to scroll multiple elements in a section at different speeds, or even
scroll elements sideways!

Feel free to grab the full source code from GitHub, and adapt it as you see
fit. Don’t forget to let us know what you’ve done, so that others can learn
from your work.

Of course, remember that manipulating huge images and multiple sprites
with JavaScript can have huge performance drawbacks. As Keith Clark
recently tweeted:

Test, test and test again. Optimize your images, and be aware that you may
have to compromise to support all browsers and operating systems.

Smashing eBook #25│Mastering HTML5│ 90

https://github.com/richardshepherd/Parallax-Scrolling
https://github.com/richardshepherd/Parallax-Scrolling
http://twitter.com/#!/keithclarkcouk/status/86367151585378304
http://twitter.com/#!/keithclarkcouk/status/86367151585378304
http://twitter.com/#!/keithclarkcouk/status/86367151585378304
http://twitter.com/#!/keithclarkcouk/status/86367151585378304

Tell A Story

Above and beyond the technical wizardry of parallax websites — some of the
best of which are listed below — the common thread that each seems to
embody is story. That’s what makes them great.

I asked W+K what it learned from the project:

That a strong voice, simplicity and beauty are integral to a great
interactive storytelling experience. We often hear things like “content is
king, and technology is just a tool to deliver it,” but when you’re able to
successfully combine a powerful message with a compelling execution,
it creates an experience that people really respond to and want to
spend time with.
— W+K

We really have just scratched the surface of the work that goes into a
website like Nike Better World. The devil is in the details, and it doesn’t take
long to see how much detail goes into both the design and development.

However, if you have a compelling story to tell and you’re not afraid of a little
JavaScript and some mind-bending offset calculations, then a parallax
website might just be the way to communicate your message to the world.

THANKS

Putting together this article took the cooperation of a number of people. I’d
like to thank Seth, Ryan, Ian and Duane for answering my questions; Katie
Abrahamson at W+K for her patience and for helping coordinate the
interview; and Nike for allowing us to dissect its website so that others could
learn.

Smashing eBook #25│Mastering HTML5│ 91

About !e Authors

Louis Lazaris
Louis Lazaris is a freelance web developer based in Toronto, Canada. He
blogs about front-end code on Impressive Webs and is a coauthor of HTML5
and CSS3 for the Real World, published by SitePoint. You can follow Louis
on Twitter or contact him through his website.

Bruce Lawson
Bruce Lawson evangelizes open web technologies for Opera. He co-
authored Introducing HTML5, the best-selling book on HTML5 that has just
been published in its second edition. He blogs at brucelawson.co.uk.

Christian Heilmann
An international Developer Evangelist working for Mozilla in the lovely town
of London, England.

Sergey Chikuyonok
Sergey Chikuyonok is a Russian front-end web-developer and writer with a
big passion on optimization: from images and JavaScript effects to working
process and time-savings on coding.

Smashing eBook #25│Mastering HTML5│ 92

http://www.impressivewebs.com/
http://www.impressivewebs.com/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://dev.opera.com/
http://dev.opera.com/
http://introducinghtml5.com/
http://introducinghtml5.com/
http://brucelawson.co.uk/
http://brucelawson.co.uk/

Richard Shepherd
Richard (@richardshepherd) is a UK based web designer and front-end
developer. He loves to play with HTML5, CSS3, jQuery and WordPress, and
currently works full-time bringing VoucherCodes.co.uk to life. He has an
awesomeness factor of 8, and you can also find him at
richardshepherd.com.

Smashing eBook #25│Mastering HTML5│ 93

http://twitter.com/richardshepherd
http://twitter.com/richardshepherd
http://www.vouchercodes.co.uk/
http://www.vouchercodes.co.uk/
http://richardshepherd.com/
http://richardshepherd.com/

