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Abstract

A study of thick-walled spherical vessels under steady-state radial temperature gradients using elasto-plastic analysis is reported. By

considering a maximum plastic radius and using the thermal autofrettage method for the strengthening mechanism, the optimum wall

thickness of the vessel for a given temperature gradient across the vessel is obtained. Finally, in the case of thermal loading on a vessel, the

effect of convective heat transfer on the optimum thickness is considered, and a general formula for the optimum thickness and design graphs

for several different cases are presented.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In general, the existence of any temperature gradient

across the wall of a thick-walled vessel induces a thermal

stress. Often, thermal stresses are greater than those

generated by application of either internal and/or external

pressure. From an economical point of view, the thermo-

elasto-plastic method is used for design of such vessels.

Detailed analyses of thermal stress in spherical and

cylindrical vessels in the elastic range are given in [1–4].

In [5] the behaviour of thick-walled spherical and

cylindrical vessels under thermal and mechanical stresses

is considered. The exact solution for the stress distribution

in a thick-walled sphere made of elastic-perfectly plastic

material and under a steady state, radial temperature

gradient is obtained in [6]. In the same paper an approximate

solution with negligible elastic strain is also examined; the

approximate and exact solutions yield the same results as

the temperature gradient approaches infinity. The onset of

yield in thick-walled spherical vessels for various combi-

nations of temperature and pressure and various radius
0308-0161/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijpvp.2004.10.001

* Corresponding author. Tel.: C98 21 616 5510; fax: C98 21 600 0021.

E-mail address: mhkargar@sharif.edu (M.H. Kargarnovin).
ratios is studied in [7]. Elasto-plastic thermal stresses in a

spherical vessel under a temperature gradient across the wall

thickness are studied in [8]. In all of these studies, for the

thermal stress analysis, the temperature of the external

surface of the vessel is held constant, at the same time, the

temperature of its internal surface is increased and the

resultant stresses are obtained [6–8]. In this paper, after

reviewing some reported works in this field, by considering

a maximum plastic radius and using the concept of thermal

autofrettage for the strengthening mechanism, the analysis

of thick-walled spheres with no convective heat transfer to

the ambient is presented. Modeling and closed form

solutions for stress distributions in the elastic part, due to

combined pressure and temperature gradient, thermal

loading and unloading and design curves are covered in

Sections 2.1–2.5. However, in practice convective heat

transfer occurs between the external surface of the vessel

and the surroundings. This means that any changes in the

temperature of the internal surface will change the

temperature of the external surface. This change, in turn,

is a function of the internal temperature, the size of the

external surface, the mechanical properties of the vessel’s

material, and the properties of the fluid, which is in contact

with the external surface of the vessel. In Section 3,
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the effect of convective heat transfer on the minimum

thickness of the vessel, and design graphs for several

different cases are presented.
2. Governing stress–strain relations

The following assumptions are made:
(1)
 The loading and geometry are symmetric, i.e. r and q in

spherical coordinates are principal planes and

directions.
(2)
 Body forces are negligible.
(3)
 The vessel deformation is quasi-static, i.e. no stress

waves are produced by applying a temperature gradient.
(4)
 The temperature of the inside surface of the vessel is

greater than that of the outside surface, i.e. the direction

of heat flow is outward.
(5)
 The temperature in the vessel is such that the effects of

creep deformation are not considered.
(6)
 The vessel material is elastic-perfectly plastic.
(7)
 The yield stresses in tension and compression are the

same, i.e. the Baushinger effect is neglected.
(8)
 The effects of stress and temperature on the modulus of

elasticity, yield stress, coefficient of thermal expansion

and the other material properties are negligible.
(9)
 The Tresca and von-Mises yield criteria are used.
2.1. The onset of yield under the coupled effect of

a temperature Gradient and internal pressure

When a thick-walled sphere is under a severe tempera-

ture gradient, elastic and plastic zones are established. At

the elasto-plastic interface, a radial stress is created that has
Fig. 1. Different regions for the onset of yield in a thick-walled sphere u
a similar effect to an internal pressure on the elastic part of

the vessel. In addition, because of the difference between the

temperatures of the elasto-plastic interface and the outside

radius, the elastic part of the vessel is under a temperature

gradient. Therefore, the elastic part of the vessel is under the

coupled effects of a temperature gradient and an internal

pressure. In [7] this subject is studied in detail and the

conditions for the onset of yield for different combinations

of temperature and pressure are examined. The elastic

stresses for combined loading of a thick-walled vessel are

obtained from the following relations [7]:

sr=b Z ½m3ð1 Kp=bÞKmR2ðm2 Cm C1Þ

CR3ðp=b Cm2 CmÞ�=R3ðm3 K1Þ
(1)

sq=b Z ½Km3ð1 Kp=bÞKmR2ðm2 Cm C1Þ

C2R3ðp=b Cm2 CmÞ�=2R3ðm3 K1Þ (2)

In these relations RZr/a, mZb/a, and bZaEDT/(1Kn); a,

b, DT, p, and a are the inside radius, outside radius,

temperature difference between inside and outside radii,

internal pressure, and heat expansion coefficient of the

material, respectively. Denoting tr as the maximum shear

stress at radius r, we have [7]:

tr=bZðsqKsrÞ=2b

Z½3m3ðp=bK1ÞCmR2ðm2CmC1Þ�=4R3ðm3K1Þ (3)

First yield occurs at the radius at which tr reaches the value

corresponding to the Tresca or von Mises yield criterion.

For different combination of p and b and the radius ratio m,

this radius can be at any position within the vessel wall.

Fig. 1 shows these critical radii [7]. In regions I and IV, first

yield is at the inside radius of the vessel. In region III, first
nder combined internal pressure and radial temperature gradient.
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yield is at the outside radius. In region II, first yield is at

the radius RZ3m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Kp=bÞ=ðm2CmC1Þ

p
. Curves 1–4 are

the interfaces of these regions and are defined by [7]:

1/p=bZ1Kðm2CmC1Þ=9m2 (4)

2/p=bZ1Kðm2CmC1Þ=9 (5)

3/p=bZ2ðmK1Þ2=3ðm2KmC1Þ (6)

4/p=bZð5K4=mK4=m2Þ=9 (7)
2.2. Elastic thermal stress distribution

The elastic stresses in a thick-walled sphere under

thermal loading, DT, are [8]:

sr Zbab½aCbKða2CabCb2Þ=rCa2b2=r3�=ðb3Ka3Þ (8)

sq Z bab½a Cb K ða2 Cab Cb2Þ=2r Ka2b2=2r3�=ðb3 Ka3Þ

(9)

The temperature distribution in the wall of the vessel is [8]:

TðrÞ Z
b=r K1

b=a K1
DT CTb (10)
Fig. 2. Variation of pc/bc versus m1.
2.3. Elasto-plastic thermal stresses

If c is the radius to the interface of the elasto-plastic

regions and y is the initial yield stress, the yield criterion and

equilibrium equation are satisfied in the plastic part of the

vessel (a%r%c). By combining these relations

dsr ZK2y dr=r (11)

and by applying the following boundary condition:

sr Z 0 at r Z a (12)

The plastic stresses are [8]:

sr ZK2y lnðr=aÞ (13)

sq ZKyð1 C2 lnðr=aÞÞ (14)

To obtain the elastic stresses (in an elastic sphere with

internal radius c, external radius b, m1Zb/c, and R1Zr/c),

the temperature between radii b and c, and the radial stress

at the elasto-plastic interface, c, should be calculated. These

unknowns can be obtained from Eqs. (10) and (13),

respectively [8]:

bc Z bðm1 K1Þ=ðm K1Þ (15)

pc Z 2y lnðc=aÞ Z 2y lnðm=m1Þ (16)

where bcZaE(TcKTb)/(1Kn), and pc is the internal

pressure for the elastic part of the vessel. Finally, by

employing Eqs. (1) and (2), the elastic stresses within
the region (c%r%b), are obtained as [8]:

sr=bc Z ½m3
1ð1 Kpc=bcÞKm1R2

1ðm
2
1 Cm1 C1Þ

CR3
1ðpc=bc Cm2

1 Cm1Þ�=R
3
1ðm

3
1 K1Þ (17)

sq=bc Z ½Km3
1ð1 Kpc=bcÞKm1R2

1ðm
2
1 Cm1 C1Þ

C2R3
1ðpc=bc Cm2

1 Cm1Þ�=2R3
1ðm

3
1 K1Þ (18)

By applying the Tresca yield condition at rZc one can get

[8]:

Ky=bc Z½3m3
1ðpc=bcK1ÞCm1ðm

2
1Cm1C1Þ�=2ðm3

1K1Þ

(19)

Finally, the variation of internal pressure to thermal loading

ratio, i.e. pc/bc versus m1 can be obtained by combining

Eqs. (15), (16) and (19) [8]:

pc=bc Z½m1ð2m2
1Km1K1Þlnðm=m1Þ�=

!½m3
1ð3lnðm=m1ÞC1ÞK1�

(20)

In Fig. 2 for several different radius ratio m (2, 2.791, 4), the

variation of pc/bc versus m1 is plotted.

If the temperature of the inner surface of the vessel is

increased such that in the elastic part of the vessel another

yield surface is initiated, at inception of this condition we

consider the value of c as c** which is the maximum plastic

radius and consequently we take m1 as m��
1 Zb=c��. The

value of c** can be obtained by simultaneous solution of

Eqs. (6) or (7) and (20). As shown in Fig. 2 for m!2.791,

m��
1 is obtained from Eqs. (6) and (20). On the other hand, if

mO2.791, m��
1 is obtained by solving Eqs. (7) and (20).

Note that, Eqs. (13)–(16) are valid for radius c!c** and to

determine the value of c, Eq. (16) is divided by Eq. (15) and

the result is equated to Eq. (20). By solving this equation, c

can be determined and after inserting this in Eq. (16), pc can

be obtained.



Fig. 3. Different parameters in a thick-walled sphere under temperature

gradient.
Fig. 4. Variation of dimensionless temperature gradient versus m [9].
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2.4. Establishing design curves

Fig. 3 shows a section of a thick-walled spherical vessel

and its geometrical parameters in a more general form. The

inner and outer radii are a and b, respectively. Tin and Tout

are the inside and outside surface temperatures of the vessel,

respectively. As mentioned before, the radius c** represents

the primary elasto-plastic interface radius at which a new

secondary elasto-plastic region at radius c**!c 0!b in the

elastic zone of the vessel is created. The radius d is a new

generated elasto-plastic interface during unloading of the

vessel.

Usually in such vessels, a primary loading and unloading

cycle called a pre-working cycle is utilized as a strengthen-

ing mechanism. On the other hand, to create an appropriate

residual stress across the wall of the vessel, the method of

thermal autofrettage is used. In practice, the designer

intends to consume less material in the production of the

vessel. In this case, for an arbitrary value of dimensionless

temperature gradient b, we decrease the wall thickness of

the vessel such that a new elasto-plastic interface at rZc 0 in

the elastic part of the vessel is formed. Under this condition,

b will be designated by b**. In order to obtain b**, we first

substitute Eq. (16) into Eq. (19), then we have:

bc Z 2y½m3
1ð3 lnðm=m1ÞC1ÞK1�=½m1ð2m2

1 Km1 K1Þ�

(21)

Then by combining Eqs. (15) and (21) b becomes:

b Z
m K1

m1 K1

2y½m3
1ð3 lnðm=m1ÞC1ÞK1�

½m1ð2m2
1 Km1 K1Þ�

(22)

Therefore, from a design point of view we have [9]:

b�� Z
m K1

m��
1 K1

2y½m��3
1 ð3 lnðm=m��

1 ÞC1ÞK1�

½m��
1 ð2m��2

1 Km��
1 K1Þ�

(23)

If the necessary temperature gradient for initial yielding of

the vessel with its material behaving elastic-perfectly plastic

is b*, the necessary condition to have secondary yielding

during unloading is to remove a temperature gradient which
is greater than 2b*. Using the yield condition at the inside

radius a, the value of b* is obtained as [9]:

b� Z 2yðm2 Cm C1Þ=ð2m2 CmÞ (24)

Fig. 4 shows the variation of b*/y, 2b*/y, and b**/y versus

m.

A close study of Fig. 4 reveals that;
†
 The curve b*/y shows the variation of temperature

gradient versus m for the case of initial yielding of the

vessel. It is expected that by increasing wall thickness,

the initial thermal load increases but as seen from this

figure this is not always true. In addition, the maximum

value of b/y for the case of elastic design of the vessel is

2, and hence for values of b/y which are greater than 2,

we cannot use the elastic method in the design of the

vessel.
†
 The curve 2b*/y is used to predict the commencement of

secondary yielding during unloading. Note that during an

unloading cycle, yielding occurs at a level of b equal to

2b*. Therefore, the minimum removal temperature

gradient necessary to cause secondary yielding in the

inside surface is 2b*/y.
†
 The curve b**/y is the design curve. Given the

temperature of the inside and outside surfaces of

the vessel and hence the value of DT, one can calculate

the value of b**ZaEDT/(1Kn), and by using this curve,

one can obtain the value of m. As shown in this figure, the

loading capacity of the vessel is significantly increased

compared to the elastic design.
2.5. Thermal unloading

Depending on the geometrical factor m, and the amount

of removed temperature gradient from the vessel, different

deformation modes commence in the vessel.

At this point different deformation modes on the

unloading phase are discussed when the vessel is under

different temperature gradients, b**.



Table 1

Values of c**/a and d/a for several values of b/a

mZb/a m=m��
1 Zc��=a m/m2Zd/a

1.655 1.108 1.000

2.200 1.247 1.086

2.791 1.395 1.182

4.000 1.668 1.358

5.200 1.867 1.500

6.400 2.086 1.619

M.H. Kargarnovin et al. / International Journal of Pressure Vessels and Piping 82 (2005) 379–385 383
†
 At mZ1.655, if the temperature gradient on loading is

equal to b**, then, during the unloading phase the second

yielding initiates.
†
 For the case of m!1.655, since the relation b**!2b*

holds, if the level of loading temperature gradient is b**,

then the unloading condition is always elastic.
†
 Because the removing temperature gradient for the case

of mO1.655 is always greater than 2b*, secondary

yielding is always established in the vessel. In order to

obtain the position of the second elasto-plastic yielding,

d, the stresses in the elastic unloading phase could be

calculated which means the following new yield criterion

at this radius could be applied

ðsq KsrÞjrZd Z 2y (25)

If the ratio b/d is designated by m2, the relation between m2

and b**/y is as follows [9]:

b��=y

4ðm K1Þðm2
2 Cm2 C1Þ

3m3
2 1 K

4ðm K1Þlnðm=m2Þ

ðb��=yÞðm2 K1Þ

� ��

K
2

m2ðm
2
2 Cm2 C1Þ

�
Z 1

(26)

In Table 1 for several values of b/a, the corresponding

values for c/a and d/a are presented.

As said before, for the strengthening mechanism and also

to increase the loading capacity of the vessel under a

temperature gradient, the thermal autofrettage method can be

used. To do this, after calculating the vessel dimensions (by

considering known values for the loading temperature and
Fig. 5. (a) Definition of different parameters used in the design of the ve
the volume of the vessel) and before putting the vessel into

the action, the vessel must experience a pre-working

condition (loading–unloading cycle) under a temperature

gradient of b**/y.
3. The effect of convective heat transfer

In practice, only the temperatures of the internal and

external fluids (usually air for the external fluid) in contact

with the thick-walled vessel are specified. The temperature

of the vessel surfaces cannot be obtained unless the effects

of the thermal boundary layer on the inside and outside

surfaces of the vessel are taken into consideration. More-

over, if the temperatures of the internal and external fluids

are known, the relationship between DT (temperature

gradient between the surfaces of the vessel) and DTN

(temperature gradient of the fluids) depends on the geometry

of the vessel, which in turn is a design unknown parameter.

Therefore, in order to reach an appropriate design condition,

the relation between DTN, a, and b, must be derived.

Fig. 5(a) illustrates several different parameters of the

vessel, useful for this analysis. For example TN,in, Tair, hN,in

and hair are the temperatures of the internal and external

fluids, and the convective heat transfer coefficients corre-

sponding to the inside and outside surfaces of the vessel,

respectively. In Fig. 5(b), the variation of temperature in

regions where the boundary layers form and corresponding

wall thickness of the vessel are shown. Rconv,in, Rcond, and

Rconv,out are the convective thermal resistance of the inside

surface, conductive thermal resistance of the wall thickness,

and convective thermal resistance of the outside surface of

the vessel, respectively. q is the amount of heat flux, which

under a steady-state condition becomes a constant value.

The values of any of these thermal resistances can be

calculated as [10]

Rcond Z
1

4pK
ð1=a K1=bÞ (27)

Rconv;in Z
1

4phN;ina2
(28)
ssel. (b) Variation of temperature within and outside of the vessel.



Table 2

Thermophysical properties of the air at atmosphere pressure [10]

T8 (K) m!107 (N s/m2) n!106 (m2/s) k!103 (W/mk) Pr

300 184.6 15.89 26.3 0.707

350 208.2 20.92 30.0 0.700

400 230.1 26.41 33.8 0.690

450 250.7 32.39 37.3 0.686

500 270.1 38.79 40.7 0.684

Table 3

Physical and mechanical properties of mild steel [4,10]

Modulus of

elasticity, E

(GPa)

Yield

stress, y

(MPa)

Poisson’s

ratio, n

Heat expansion

coefficient, a

(1/K)

Convective

heat trans-

fer coeff., K

(W/m K)

207 240 0.3 1.15eK5 13.4
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Rconv;out Z
1

4phairb
2

(29)

Under steady-state heat transfer conditions, in Fig. 5(b)

the value of q is the same between points 1–4 and 2–3, i.e.

(qZq23Zq14). By equating the values of these qs we have

[10]

DT Z
ð1=KÞ½1=a K1=b�

1=hina2 C ð1=KÞ½1=a K1=b�C1=hairb
2

DTN (30)

in which K is the coefficient of heat conduction. By

combining Eqs. (23) and (30) and considering b**Z
aEDT/(1Kn), the relationship between DTN, a, and b is

as follows [9]

b��
N

y

½1=a K1=b�

K=hN;ina2 C ½1=a K1=b�CK=hairb
2

Z
m K1

m��
1 K1

2½m��3
1 ð3 lnðm=m��

1 ÞC1ÞK1�

m��
1 ð2m��2

1 Km��
1 K1Þ

(31)

where b��
N ZaEDTN=ð1KnÞ. It should be noted that the

coefficients of conductive heat transfer of the inside and

outside surfaces of the vessel, are functions of many

parameters such as the size of the surfaces, temperatures of

fluids, etc.
Fig. 6. Variations of permissible temperatures, versus b.
3.1. Spherical vessel in contact with air

In this case, we consider only the effect of heat transfer

from the outside surface of the vessel. The external fluid,

which is in contact with the outside surface of the vessel, is

air. Because in the design condition the volume of the vessel

is prescribed, the inside radius a is also prescribed. In

Eq. (31), hair is a function of air properties, temperature of

the outside surface of the vessel, and the geometry of the

vessel. Hence, in order to design the vessel properly we need

an explicit relation for this parameter. In [10], the following

relation for hair is given:

hair Z NuD

k

D
(32)

in which, k is the conductive heat transfer coefficient of the

air, D is the outside diameter of the vessel (DZ2b), and NuD

is the Nuselt Number which changes according to the

following relation [10]

NuD Z 2 C ð0:4Re1=2
D C0:06Re2=3

D ÞPr0:4 mN

ms

� �1=4

(33)

where Reynolds Number, ReD is defined as [10]

ReD Z
VairD

n
(34)

In the above equations, Pr, mN, ms, Vair, and n are the Prandtl

number, air viscosity, air viscosity at the outside surface

temperature, air velocity around the vessel, and the

kinematic viscosity of the air, respectively. The parameters
Pr, m, n, and k are all functions of the air temperature.

In Table 2 the values of these parameters are given for

different values of air temperature.

Now, using the value of hN,in as N in Eq. (31), and using

the values of thermo-physical properties of air from Table 2,

and also the values of physical and mechanical properties of

mild steel from Table 3 and having the geometric dimensions,

we can calculate the permissible temperature of the inside

surface from the criterion of maximum plastic depth.

The variations of T��
in , T���

in versus b for the case of

aZ1 m, TairZ3008 K, VairZ10 m/s are shown in Fig. 6. T��
in

is the permissible temperature of the inside surface of the

vessel, in which the outside surface of the vessel is held at

ToutZ3008 K. T���
in is the permissible temperature of the

inside surface imposed on the vessel, when the effect of heat

transfer is considered.

Consider q23 and q, then by equating these values, we

have

Tin Z Tair C ðRconv;out CRcondÞð1 KnÞb��=EaRcond (35)

Obviously the ratio b**/Rcond increases by increasing b and

the total thermal resistance curve has an absolute minimum at



Fig. 7. Variations of optimum value of the outside radius, versus Tin (K).
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bZK/hair [10]. Furthermore, we can see that the minimum

value of T���
in is 7808 K and occurs for bZ2.2. Therefore, for

Tin!7808 K imposed on the vessel with an arbitrary radius, if

the vessel yields then m1 will be less than m��
1 . Suppose the

internal radius and the temperature of the inside surface are

known, we can get the optimum value of the outside radius of

the vessel, using Eq. (31) and Tables 2 and 3.

The variations of b** and b*** versus Tin for the case of

aZ1 m, TairZ3008 K, VairZ10 m/s are shown in Fig. 7; b**

is the optimum value of the outside radius of the vessel, in

which the inside and outside surfaces of the vessel are held

at the fixed temperatures Tin, and ToutZ3008 K, respectively

(Eq. (23)). Hence, b*** is the optimum outside radius of the

vessel, when the effect of heat transfer is also considered.

As an interesting result of Fig. 7, in this case for

Tin!7808 K we can consider any value for the external

radius and for TinO7808 K, we can find two optimum values

for the outside radius of the vessel and also the difference

between the two curves b** and b*** is clear.
4. Conclusions

In this paper by considering a maximum plastic radius

and using the concept of thermal autofrettage for
the strengthening mechanism, the minimum thickness of a

vessel for which the inside and outside surfaces of the vessel

are held at fixed temperatures is obtained. In addition,

because of the presence of convective heat transfer from the

outside surface of the vessel, the optimum thickness of the

vessel will be different from the vessel for which the inner

and outer surfaces are held at fixed temperatures. This

subject is also considered in this paper. This effect is

presented as a new formula, but this formula has not a

dimensionless form and could not be expressed as a function

of b/a. For this reason, the design curves are only presented

for several special cases. However, having on hand the

surrounding conditions, the geometry of the vessel, and the

material properties of the vessel, by using this formula

problems of this nature can be solved.
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